University of Puerto Rico Chemistry Deartment Departamental Seminar

Friday 21 of August, 2015

11:30 AM

Abbot Room

by

Dr. Beer Pal Singh

Physics Department - UPRM

Iron oxide nanoparticles: facile synthesis, characterization and their use for electrochemical sensing of acetaminophen

<u>Beer Pal Singh</u>^{a,c}, Carmen A. Vega-Olivencia^b, and M.S. Tomar^a ^aDepartment of Physics, University of Puerto Rico, Mayaguez, PR 00681-9000, USA ^bDepartment of Chemistry, University of Puerto Rico, Mayaguez, PR 00681-9000, USA ^cDepartment of Physics, C.C.S. University, Meerut – 250004 (UP), India e-mail: <u>drbeerpal@gmail.com</u>

Abstract

Iron oxide nanoparticles were synthesized using co-precipitation method via subsequent heat treatment using ferrous chloride (FeCl₂.4H₂O) as a source of iron. The as-synthesized powder of magnetite (Fe₃O₄) nanoparticles was annealed at 700°C in air atmosphere to transform hematite (α -Fe₂O₃) phase. The synthesized Fe₃O₄ and α -Fe₂O₃ nanoparticles were characterized using X-ray diffraction (XRD), thermogravimetric (TG) and differential scanning calorimetric (DSC) analysis, Raman, Fourier transform infrared (FTIR) and absorption spectroscopy. The XRD patterns were used to studied the phase, crystal structure and particle size of as-synthesized nanoparticles. The thermal behavior and weight loss of Fe₃O₄ was studied by TG-DSC analysis, which facilitates to decide the annealing temperature in transition to α -Fe₂O₃ phase. The as-prepared Fe₃O₄ and α -Fe₂O₃ nanoparticles were found electrochemical active towards acetaminophen (C₆H₉NO₂) and used for electrochemical sensing of the acetaminophen. The sensing was performed by Fe₃O₄ and α -Fe₂O₃ nanoparticles modified glassy carbon (GC) electrode using a potential controlled cyclic voltammetric (CV) electrochemical technique.