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Abstract of Dissertation Presented to the Graduate School
of the University of Puerto Rico in Partial Fulfillment of the
Requirements for the Degree of DOCTOR OF PHILOSOPHY

AN INFORMATION-BASED COMPLEXITY APPROACH TO
ACOUSTIC LINEAR STOCHASTIC TIME-VARIANT SYSTEMS

By

Juan Bautista Valera-Márquez

May 2013

Chair: Domingo Rodŕıguez
Major Department: Electrical & Computer Engineering

This thesis describes the formulation of a Computational Signal Processing

(CSP) modeling framework for the analysis of underwater acoustic signals used

in the search, detection, estimation, and tracking (SDET) operations of moving ob-

jects. The underwater acoustic medium where the signals propagate is treated as

linear stochastic time-varying system exhibiting double dispersive characteristics, in

time and frequency, simultaneously.

Acoustic Linear Stochastic (ALS) time-variant systems are characterized utiliz-

ing what is known as time-frequency calculus. The interaction of wavefront acoustic

pressure fields with underwater moving objects is modeled using what is termed

Imaging Sonar and Scattering (ISS) operators. It is demonstrated how the pro-

posed CSP modeling framework, called ALSISS, may be formulated as an aggregate

of ALS systems and ISS operators. Furthermore, it is demonstrated how concepts,

tools, methods, and rules from the field of Information-Based Complexity (IBC) are

utilized to seek approximate solutions toNP-hard problems encountered in the anal-

ysis of underwater acoustic signals treated under the ALSISS modeling framework.

ii



Error approximation algorithms, formulated as approximate solutions, are imple-

mented using convex optimization techniques. Finally, Kronecker products algebra

is used as a mathematical language to formulate new variants of matching pursuit

algorithms and to aid in the mapping of these algorithms to parallel computational

structures.
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Resumen de Disertación Presentado a la Escuela Graduada
de la Universidad de Puerto Rico como requisito parcial de los
Requerimientos para el grado de DOCTOR EN FILOSOFÍA

UN ENFOQUE DE COMPLEJIDAD BASADA EN INFORMACIÓN
PARA SISTEMAS LINEALES ACÚSTICOS ALEATORIOS

VARIANTES EN EL TIEMPO

Por

Juan Bautista Valera-Márquez

Mayo 2013

Consejero: Domingo Rodŕıguez
Departamento: Ingenieŕıa Eléctrica y Computadoras

Este trabajo de tesis describe la formulación de un arquetipo de modelado

computacional para el procesamiento de señales (CSP, por sus siglas en inglés), con

el fin de analizar señales acústicas submarinas usadas en operaciones de busqueda,

detección, estimación y rastreo (SDET, por sus siglas en inglés) de objetos móviles.

El medio acústico submarino donde las señales se propagan es tratado como un

sistema lineal, aleatorio, variante en el tiempo, que exhibe caracteŕısticas de doble

dispersión, en tiempo y en frecuencia, de manera simultánea.

Los sistemas variantes en el tiempo, acústicos, lineales, aleatorios (ALS, por sus

siglas en Inglés) son caracterizados utilizando lo que se conoce como cálculo tiempo-

frecuencia. La interacción de un campo acústico de presión de ondas con objetos

que se mueven bajo el agua es modelada usando operadores de sonar de imágenes

y dispersión (ISS, por sus siglas en inglés). En este trabajo de tesis se demuestra

cómo el arquetipo CSP propuesto para el modelado, llamado ALSISS, es formulado

como una composición o agregado de sistemas ALS y operadores ISS. Además, se
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demuestra cómo conceptos, herramientas, métodos y reglas del campo de la com-

plejidad basada en información (IBC, por sus siglas en Inglés) son utilizados para

buscar soluciones aproximadas a problemas NP-hard encontrados en el análisis de

señales acústicas submarinas tratadas bajo el arquetipo de modelado ALSISS. Los

algoritmos de aproximación de error, formulados como soluciones aproximadas, son

implementados usando técnicas de optimización convexa. Finalmente, un álgebra

de productos Kronecker es usada como lenguaje matemático para formular nuevas

variantes de algoritmos de búsqueda de coincidencias (matching pursuit por su nom-

bre en inglés) y para ayudar en la conversión de dichos algoritmos en estructuras

computacionales paralelas.
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1. Introduction

The research work presented in this thesis is about new contributions to the

theory of Computational Signal Processing (CSP), a unified branch of signals theory

and systems theory which studies the computational treatment of signals, in order to

extract relevant information important to an information user. A signal is defined

in this work as any entity which is able of carrying information from one domain

to another in space-time. We do not distinguish in this research work between a

physical signal and its mathematical or model representation. The computational

treatment of signals is carried out in this work by using computational methods. A

computational method is defined as a non-empty structured set of computational

tools utilized to solve mathematically posed problems. In this context, computa-

tional signal processing is a branch of computational complexity. Computational

complexity is defined by J. F. Traub and A. Woźniakoski as the field which “studies

the intrinsic difficulty of mathematically-posed problems and seeks optimal means

for their solution” [1].

This thesis document describes new research work contributions in the area

of mathematical modeling and presents research work results dealing with a novel

formulation of a computational signal processing modeling framework designed and

developed for the study of a generalized integrated Multiple-Input Multiple-Output

(MIMO) Stochastic-Acoustic-Linear (ALS) communications and imaging-search-sonar

(ISS) operations systems, for underwater applications, which we have named ALSISS,

and its associated computational complexity.

My research work concentrated on the study of intrinsic difficulties encountered

when trying to obtain approximated solutions to optimal computational methods

associated with the proposed modeling framework which was mathematically posed

1
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in order to be treated with targeted analytics tools from the field of computa-

tional complexity. My research work dealt, in particular, with a branch of com-

putational complexity known as information-based complexity (IBC). As defined by

Wershulz, A.G., IBC is a discipline which studies “the complexity of problems for

which the available information is partial, contaminated by error [or interference],

and priced” [2] [3].

The major contribution of my work is the development of this computational

modeling framework which can be utilized to study mathematically posed problems

which deal with infinite-dimensional continuous signal spaces contaminated with

interference or noise signals. These signal spaces are acted upon by [complete] linear

operators representing computational systems which are used to estimate relevant

signals and parameters important to an information user.

The computational methods utilized to address the formulated estimation prob-

lems tend to be NP-complete. For this reason in this work we studied error approx-

imation computational methods. In this context, a computational method may be

defined as a structured set of computational tools.

1.1 Justification & Problem Formulation

The main aspects of the research work addressed in this thesis have their origins

in an early concern of mine when I begun to conduct research in acoustic signal

processing. I was concerned about how to seek solutions to problems pertaining to

underwater environmental surveillance and monitoring activities in shallow lakes and

marine ecosystems (0 to 100 meters in depth) using acoustic signals. In particular,

I was concerned about environmental surveillance and monitoring activities in Lake

Maracaibo.
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Figure 1–1: Satellite view of Lake Maracaibo. Source: ICLAM

Lake of Maracaibo is a somewhat large and slightly salty lake situated in the

northwestern part of Venezuela, my native country, in South America. Lake Mara-

caibo is considered to be the principal component of the known Maracaibo Basin,

an extremely rich hydrocarbon producing region of the Earth, with an estimated

1.5×109m3 of oil reserves. The lake is about 122 kilometers long and 110 kilometers

wide, with an area of about 13,420 square kilometers. By comparison, the Common-

wealth of Puerto Rico has an estimated area of about 13,790 square kilometers, for

the whole archipelago. The main island of Puerto Rico, considered the smallest and

most eastern of the Greater Antilles, has an area of 9,100 square kilometers. Fig-

ure 1–1 shows the bathymetric information about the Lake Maracaibo system, and

Figure 1–2 shows a satellite view of Lake Maracaibo. These images were offered by

the Information Systems Department of the Conservation Lake Maracaibo Institute

(ICLAM for its acronym in Spanish).

Lake Maracaibo is connected on the north to the Gulf of Venezuela and the

Caribbean Sea through a narrow water channel, that is about 14 meters in depth
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Figure 1–2: Graphical Representation of the Bathymetry of Lake Maracaibo system.
Source: ICLAM

and about 200-300 meters wide. This narrow channel is called Maracaibo Strait

and runs through Tablazo Bay. The lake is a basin like lake, with its deepest part

estimated at about 60 meters. It is considered one of the oldest lakes on Earth.

Lighter fresh water comes from many river tributaries, its main tributary being the

Catatumbo River, and floats on top of heavier salt water which comes from the

Caribbean Sea. Over a narrow region of the Tablazo Bay, across the Maracaibo

Strait, spans the great bridge named General Rafael Urdaneta. The bridge is about

8.68 kilometers long.
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Figure 1–3: Oil Rigs in Lake Maracaibo

Figure 1–4: Hundreds of derricks pump oil from Lake Maracaibo.

Grave environmental situations and concerns about the current condition of the

lake are demanding new approaches at addressing these concerns. One of these new

approaches deals with acoustic environmental monitoring.

We are interested in searching and gathering new information, knowledge, and

understanding from data gathered in Lake Maracaibo through acoustic underwater

environmental surveillance and monitoring (eSAM) operations. The undertaking of

acoustic communications in any underwater environment becomes a very difficult
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enterprise since the underwater propagation of an acoustic wavefront experiences un-

desirable changes due primarily to two significant reasons: time-frequency acoustic

signal transformations and excessive signal multipath effects. An additional factor

which contributes to the great difficulty encountered when trying to communicate

through an underwater acoustic medium is the low speed of sound propagation in

water. Even though, at a rate of about 1,560 meters per second, the speed of the

sound in the water is much faster than acoustical energy moving through the air, at

a rate of about 340 meters per second, such speed in water is extremely low when

compared with electromagnetic energy propagation at rate of 300,000,000 meters

per second.

In this work, I concentrate on the study of the problem of the time-frequency

transformations experienced by an acoustic waveform underwater signal and how to

develop computational signal processing methods to minimize these adverse trans-

formations in processes pertaining to the search, detection, estimation, and tracking

(termed SDET processes) of underwater acoustic signals. A whole chapter of this

thesis is dedicated to the theory of time-frequency signal analysis, where we present

some original contributions. Another whole chapter is also dedicated to the for-

mulation of a Computational Signal Processing (CSP) modeling framework, where

systems are formulated and integrated in an unified manner to model certain com-

putational aspects of these SDET processes.

1.2 Problem Space

In this thesis work problem space denotes the signal space where all signals that

are object of consideration inside the problem are encountered. This thesis work

addresses the fundamental question of how to characterize randomly time-variant

channels when subjected to a special class of analytic signals as inputs; in particular,

the class of Multidimensional, Multicomponent, Polynomial Phase (MMPP) signals.
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In this work, an analytic signal, implies the analytic representation of a real-valued

function, assuming hermitian symmetry. In general, an analytic signal or function

is any function which can always be locally described by a convergent power series.

Particular emphasis is given in this work to the characterization of Acoustic Linear

Stochastic (ALS) channels for broadband Multiple-Input Multiple-Output (MIMO)

multi-carrier communication.

Let x(t) be an MMPP analytic input signal to an ALS channel. Let y(t) =

x(t) + n(t) be the output signal of the channel, where n(t) is a stochastic signal

representing the additive white Gaussian noise exhibited in the channel. A typical

example of this type of signals are the chirp signals, whose corresponding time-

domain function, for a sinusoidal linear case, is the sine of the phase in radians:

x(t) = sin

[

φ0 + 2π

(

f0t +
k

2
t2
)]

, (1.1)

where the instantaneous frequency is described by the equation

f(t) = f0 + kt, (1.2)

and it is accompanied by the harmonics that appear due to frequency modulation.

Problem Statement: How to formulate, in an integrated manner, the

complexity associated with the characterization of the impulse response

function of the channel, denoted by h(t, τ), in order to address applications

in three specific areas:

i. Performance evaluation of digital underwater acoustic communications

(a detection & estimation problem), and

ii. Description of underwater moving objects (a SONAR problem).

We start by modeling the signal-channel interaction in the following manner:

y(t) =

∫

h(t, τ)x(t− τ)dτ + n(t). (1.3)
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Using U(ν, τ) as the Fourier transform of the impulse response function or

object-domain point spread function h(t, τ), we may describe the above channel

input/output model as follows:

∫∫

U(ν, τ)x(t− τ)ej2πνtdτdν + n(t). (1.4)

The function U(ν, τ) is usually termed the Delay-Doppler Spread Function of

the ALS channel. This function is of fundamental importance in our research work

since it allowed to formulate our solution under a time-frequency signal represen-

tation computational framework. Time-frequency signal representation theory is a

well established discipline. However, most important and fundamental results are

provided in analytic form, with very few results presented under a computational

setting. By a computational setting we imply any formulation or set of formulations

which may readily admit an algorithmic implementation in a digital computer. Our

solution approach provided an original contribution by formulating desired results

in a time-frequency computational modeling framework, using the discrete Cohen

class of time-frequency distributions as our main computational tools which will be

defined in the next section. In particular, we concentrated on the discrete Ambi-

guity function as the basis for an unique discrete formulation of the Cohen class of

time-frequency distributions, following the work of J.P. Soto and D. Rodriguez [4].

In 1953, P.M. Woodward developed the concept of Ambiguity Function. The

Ambiguity Function (AF) plays an important role in many applications dealing

with the analysis of non-stationary signals [5, 6]. It is finding new roles in applica-

tions such as the joint time-frequency analysis of Multiple-Input Multiple-Output

(MIMO) doubly dispersive channels and phase-coded waveform design for orthog-

onal frequency division multiplexing (OFDM) radar sensing and communications.

L. Cohen developed the general representation of a signal in continuous time and

frequency (two dimensional distribution) calling it “general class” (GC).
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1.2.1 Continuous Ambiguity Functions and the General Class of Cohen
Distributions

The Continuous Ambiguity Function of x, y ∈ L2(R) is defined as a map

Ax,y : R× R→ L2(R× R), (1.5)

is given by

Ax,y(τ, ν) = eiπντ
∫

x (t+ τ) y∗ (t) ej2πνtdt. (1.6)

In the case when x = y, Ax,y becomes Ax. L. Cohen [7, 8] developed the concept

of a general class for two dimensional distributions. As described by L. Cohen, all

time-frequency representations, for x ∈ L2(R), can be obtained from the canonical

map

Cx : R× R→ L2(R× R), (1.7)

expressed as

Cx(t, ω) =

∫ ∫

Ax(τ, η)φ(τ, η)e
−j2π(tη+ωτ) dη dτ, (1.8)

where the function φ ∈ L2(R×R) is termed the kernel of the representation. Previous

studies have been conducted for the general class of two dimensional distributions

using specific kernel functions. Some known kernel functions are presented in Table

1, below.
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Distribution φ(τ, θ) φ(τ, η)

Wigner 1 1

Margenau - Hill cos (τθ/2) cos (πτη)

Kirwood-Rihanzek e−τθ/2 e−τπη

Born - Jordan
sin(τθ/2)

τθ/2
sin(πτη)

πτη

Choi - Williams e−α(τθ)2 e−4α(πτη)2

Zhao-Atlas-Marks e−ατ2

|τ | sin(αθτ)
αθτ

e−ατ2

|τ | sin(2παητ)2παητ

Table 1: Commonly Known Kernel Functions

1.2.2 Discrete Ambiguity Functions (DAF) and Discrete Cohen Distri-
butions (DCD)

In [9], M. Richman, et al., presented a discrete formulation for the expression

given in (1.6). This new expression is called the Discrete Ambiguity Function (DAF).

The DAF, for x, y ∈ l2(ZN ), defined by the map

Ax,y : ZN × ZN → l2(ZN × ZN ), (1.9)

is given by

Ax,y[τ, ν] = ρτ,ν

N−1∑

l=0

x[〈l + τ〉N ]y
∗[l]ej

2π
N

νl, (1.10)

where we call the expression ρτ,ν the ambiguity function’s phase factor, and it is de-

fined in [9]. M. Richman, et al., proceeded to use finite dimensional linear operators

to arrive at an operator formulation of the DAF. The procedure is as follows:

For x ∈ l2(ZN), γ, µ ∈ Z and n ∈ ZN , we define the following linear operators:

• Translation: Sγ{x}[n] = x[〈n + γ〉N ]

• Modulation: Mµ{x}[n] = ej
2π
N

µnx[n]
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For x, y ∈ l2(ZN ), 〈x, y〉 denotes their inner product and is given by 〈x, y〉 =
∑

n∈ZN
x[n]y∗[n]. Using these definitions, the operator formulation for the DAF

follows from (1.10):

Ax,y[τ, ν] = ρτ,υ〈Mυ{Sτ{x}}, y〉. (1.11)

This operator formulation of DAF has served as a point of inspiration to develop

a general class of Discrete Cohen Distributions (DCD), expressed in canonical form

in the following manner: for x ∈ l2(ZN), define the map

Cx : ZN × ZN → l2(ZN × ZN ), (1.12)

as the following expression,

Cx[n, k] =
1
N

N−1∑

τ=0

N−1∑

ν=0

ρτ,υ〈Mυ{Sτ{x}}, x〉

·φ[τ, ν]e−j
2π
N

(nν+kτ),

(1.13)

where φ is the kernel in l2(ZN ). When φ[τ, υ] = 1, for τ, υ ∈ ZN , the DCD reduces

to the discrete Wigner distribution (DWD) as defined in [10].

Let F : ZN×ZN → l2(ZN×ZN ) be the symmetric discrete Fourier transform in

two dimensions (2D); then, (1.13) defines the symmetric discrete Fourier transform,

in 2D, of the product of the DAF and the kernel [9]; i.e.,

Cx[n, k] = F{Ax · φ}[k, n]. (1.14)

1.2.3 Relating DAF and DCD Operations

The concept of the Discrete Cohen Distributions of a signal was introduced in

the previous section through equation (1.13). In this section we re-formulate prop-

erties of the DCD based on J. J. Benedetto and J. J. Donatelli [11], who presented

the following theorem for the DAF of a signal after being effected by translation,

modulations, and rotations operators. The original formulations of these proper-

ties appear in [10]. We first introduce the definition of the rotation operator: For
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x ∈ l2(ZN), λ ∈ C, with |λ| = 1, and n ∈ ZN , the rotation operator Rλ{x} is defined

as

Rλ{x}[n] = λx[n]

The translation S−γ{x} and modulation Mµ{x} operators were defined in the

previous section.

Theorem 1 Let x ∈ l2(ZN), γ, µ, λ ∈ Z, with|λ| = 1, and τ, ν ∈ ZN :

1. AS−γ{x}[τ, ν] = e−j 2π
N

γνAx[τ, ν]

2. AMµ{x}[τ, ν] = ej
2π
N

µτAx[τ, ν]

3. ARλ{x}[τ, ν] = Ax[τ, ν]

From Theorem 1, and equation (1.14), we obtain the following proposition:

Proposition 1 Let x ∈ l2(ZN ) and γ, µ, λ, n, k ∈ ZN , with |λ| = 1:

1. CS−γ{x}[n, k] = Cx[〈n+ γ〉N , k]

2. CMµ{x}[n, k] = Cx[n, 〈k − µ〉N ]

3. CRλ{x}[n, k] = Cx[n, k]

1.3 Proposed Solutions

The solutions proposed in this thesis work are based on the integration of two

computational signal processing frameworks (ALS & ISS) as a composed framework

(ALS-ISS) enabled to model, with significant level of accuracy, the behavior of an

underwater acoustic linear stochastic channel, in the context of the communica-

tion and sonar problems. For this purpose the author used time-frequency analysis

tools as solid mathematical foundations that allowed the construction of two com-

putational frameworks. A valued perspective was added to the work performing an

information-based complexity analysis of the computational frameworks.
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1.4 Thesis Organization

This thesis document was organized as follow: this chapter addresses the in-

troductory concepts and the justification for this research. Chapter 2 elaborates

a compact theoretical foundation survey, about the elementary concepts and defi-

nitions treated in this thesis work. Chapter 3 presents a background review of 3

journal papers related to main topics in this research. Chapter 4 introduces the

Information-Based Complexity (IBC) concepts and relates these concepts with the

Computational Signal Processing Theoretical Framework (CSP) concepts presented

in this thesis. Important contributions are presented in Chapter 4. Chapter 5 ad-

dresses the Acoustic Linear Stochastic (ALS) systems theory. Chapter 6 develops

the parameter estimation matching pursuit algorithms. This last chapter is funda-

mental since it presents the Single Input Single Output (SISO), Single Input Mul-

tiple Output (SIMO), Multiple Input Single Output (MISO), and Multiple-Input

Multiple-Output (MIMO) approaches related to the parameter estimation problem

in the ALS channels context. Chapter 7 presents some ethical considerations related

to the main research topic. Finally, Chapter 8 presents conclusions and shortly de-

scribes future works.



2. Elementary Concepts and Ideas

2.1 Introduction

In this section we describe important concepts related to this research. These

concepts form the theoretical foundation to begin a systematic search of knowledge

that would enable us to successfully reach conclusions solidly grounded.

2.2 Kronecker Products

Let A ∈ l2(ZM × ZN) and B ∈ l2(ZQ × ZR) be two matrices. The Kronecker

product of A and B is a binary operation which results in a new matrix C ∈

l2(ZMQ × ZNR), denoted by C = A⊗ B, given by

C = A⊗ B =












a0,0B a0,1B . . . a0,N−1B

a1,0B a1,1B . . . a1,N−1B

...
...

. . .
...

aM−1,0B aM−1,1B . . . aM−1,N−1B












. (2.1)

If the matrix A is equal to the identity matrix I of order M , then

C = IM ⊗ B =












B 0Q×R 0Q×R

0Q×R B . . .0Q×R

...
...

. . .
...

0Q×R 0Q×R . . . B












︸ ︷︷ ︸

M

. (2.2)

14
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The equation (2.2) can be expressed by a direct sum of matrices as follow

C =
⊕

i∈ZM

(B) =












B 0Q×R 0Q×R

0Q×R B . . .0Q×R

...
...

. . .
...

0Q×R 0Q×R . . . B












. (2.3)

The Kronecker product is not a commutative operator. If,

A⊗B =









a0,0B . . . a0,N−1B

...
. . .

...

aM−1,0B . . . aM−1,N−1B









, (2.4)

and,

B ⊗ A =









b0,0A . . . b0,R−1A

...
. . .

...

bQ−1,0A . . . bQ−1,R−1A









, (2.5)

then,

A⊗ B 6= B ⊗A. (2.6)

2.2.1 Kronecker Products and Parallel Formulations

Any expression of the form IM ⊗XN can be seen as a parallel operation since

the nonzero elements, the matrices XN , appear along the diagonal. The matrix

IM ⊗ XN is a sparse matrix and its implementation favors a parallel architecture.

This can be demonstrated with a little example. Take M = 3 and N = 2. If we
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compute y = (IM ⊗XN)h, this matrix-vector multiplication operation becomes



















y0

y1

y2

y3

y4

y5



















=



















x0,0 x0,1 0 0 0 0

x1,0 x1,1 0 0 0 0

0 0 x0,0 x0,1 0 0

0 0 x1,0 x1,1 0 0

0 0 0 0 x0,0 x0,1

0 0 0 0 x1,0 x1,1





































h0

h1

h2

h3

h4

h5



















=



















x0,0h0 + x0,1h1

x1,0h0 + x1,1h1

x0,0h2 + x0,1h3

x1,0h2 + x1,1h3

x0,0h4 + x0,1h5

x1,0h4 + x1,1h5



















.

(2.7)

If the column vector h is divided into 3 sections, being of length 2 each, the

computation y = (I3 ⊗X2)h could be performed by computing three simultaneous

blocks of length 2. In the general form, operation y = (IM ⊗ XN )h can be per-

formed by computing M simultaneous blocks of length N each one. If we have a

computer architecture with M processors, then these operations could be performed

concurrently.

2.2.2 Kronecker Products and Vector Formulations

The kronecker product XM ⊗ IN also has special properties. This expres-

sion favors an architecture with vector processing capabilities. The operation y =

(XM ⊗ IN)h can be computed at a vector level instead of at a scalar level as can be

demonstrated by the following example.
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Let M = 2 and N = 4. Then, the operation y = (X2 ⊗ I4)h becomes

























y0

y1

y2

y3

y4

y5

y6

y7

























=

















x0,0 x0,1

x1,0 x1,1




⊗












1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















































h0

h1

h2

h3

h4

h5

h6

h7

























. (2.8)

After performing the Kronecker product we obtain

























y0

y1

y2

y3

y4

y5

y6

y7

























=






x0,0I4 x0,1I4

x1,0I4 x1,1I4






























h0

h1

h2

h3

h4

h5

h6

h7

























=

























x0,0












h0

h1

h2

h3












+ x0,1












h4

h5

h6

h7












x1,0












h0

h1

h2

h3












+ x1,1












h4

h5

h6

h7




































. (2.9)

This matrix-vector multiplication operation can be seen as a submatrix-vector

segment multiplication. In general, the operation y = (XM ⊗IN )h can be computed

into a machine with vector processing capabilities. The input vector could be divided

into M segments of length N each one. The expressions IM ⊗ XN and XM ⊗ IN

are used in the Kronecker product formulations of FFT algorithms and become

instrumental in obtaining efficient FFT implementations.



18

2.3 Modeling and Simulation

We can begin defining what is a model. A model is a simplified representation

of a system. This representation is focused in some particular point, in time and

space, allowing to understand or predict the real system. Now, what is a simulation?

A simulation is the manipulation of a model, changing their spatial and temporal

parameters in order to assess its performance. In this way, we can appreciate the

relationship between the variation of its parameters and to infer possible interactions

between them. Modeling and Simulation is a discipline for developing a level of

understanding of the interaction of the parts of a system, and of the system as a

whole [12].

A system is an entity which shows its existence through the interaction of its

parts. A model is a simplified representation of the actual system, developed to

facilitate its understanding. A model abstracts the entity it represents, ignoring

certain details that are not relevant to the perspective that you want to highlight.

Since all models are simplifications of reality, there is always a trade-off as to what

level of detail is included in the model. Bellinger referring about risk of models say:

“If too little detail is included in the model one runs the risk of missing relevant

interactions and the resultant model does not promote understanding. If too much

detail is included in the model the model may become overly complicated, making

impossible its implementation” [12].

A simulation, generally refers to a computerized version of the model which is

run over time, to study the implications of the defined interactions. Simulations

are generally iterative in there development. One develops a model, simulates it,

learns from the simulation, revises the model, and continues the iterations until an

adequate level of understanding is developed.
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It has been said that “modeling and simulation is a discipline and an art.

From the interaction of the developer and the model emerges an understanding of

what makes sense and what doesn’t,” [12].

A Computational Signal Processing (CSP) modeling framework is an aggregate

of the following components:

• A set of input signals

• A set of output signals

• A set of linear operators

• A set of composition rules for the linear operators

• A set of action rules for the linear operators

• A user interface.

When we are dealing with finite dimensional linear operators, the CSP modeling

framework may be implemented under a computational matrix algebra environment

or a signal algebra environment, in general. We used the numeric computational

and visualization package MATLAB to develop an instantiation of our proposed

CSP modeling framework.

2.4 The Stochastic Processes

A continuous, t-dependent, stochastic process is a family of random variables

x = {tξ; t ∈ R}. We must recall that a random variable tξ is a measurable function:

tξ(ω) : Ω −→ R

ω : 7−→ tξ(ω) = tx0 =
tξ0, (2.10)

defined on a probability space (Ω, S,P), where for each ω ∈ Ω, we have the function:

bω : R −→ R

t 7−→ bω(t) =
tξ(ω), (2.11)
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is called the orbit or trajectory of the process.

The random distribution of any signal (random vector) x can be considered as

a stochastic process with co-domain in the space of probability measures X ⊆ R. A

meaningful problem consists in determining the random distribution of a signal x(t)

given the observation of its σ−algebra St.

2.5 Random Fields

From a mathematical perspective, random fields constitute a branch that stud-

ies random (nondeterministic) functions. Random fields is is considered part of func-

tional analysis and deals with topics covered in theory of functions. The existence

of a random component transforms functional analysis in a more wide discipline,

more complex, and more challenging.

In this research work we are dealing with estimation of stochastic linear time-

variant channels. So, Random fields theory will be used in order to deal with the

stochastic estimation processes. Figure 2–2 shows all mathematic resources used in

random fields theory [13].
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Figure 2–1: Stochastic Process X with its Stochastic Variables Xk.
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Figure 2–2: George Christakos showed in his work “Random Fields Models In Earth

Sciences” which are the Mathematics Behind the Random Fields Theory



3. Background and Related Works

3.1 Literature Review

3.1.1 Introduction

In this section we describe important contributions which are related to the

main themes presented in the nature of the proposed work. A total of nineteen

(19) research contributions are discussed, ranging from the time-frequency analysis

of doubly-dispersive ALS channels to information-base complexity associated with

dynamical systems. Each article contribution is discussing and addressing four rel-

evant issues: (1) problem formulation, (2) theoretical framework, (3) mathematical

and computational resources, and (4) how this work is related to my thesis research.

23



24

3.1.2 Characterization of Randomly Time-Variant Linear Channels

The characterization of Linear Time-Invariant (LTI) systems is relatively easy [14].

But, most systems in the practical world are not LTI. The linear condition can

be approximated; however, many systems with practical interest are usually mod-

eled as linear time variant systems. So, characterization of random time-variant

linear systems (like channels) is very important in scientific and engineering appli-

cations. Wide-Sense Stationary Uncorrelated Scattering (WSSUS) channels have

gained much attention and they represent a very important type of practical sys-

tems; so, in this article they are studied deeply. The kernel definition is used for

signal characterization under an integral operator context. Systems theory, stochas-

tic methods, and filter theory are often used in this reviewed work. The channels

that were considered in our research work are stochastic channels and their modeling

must be supported by using randomly time-variant linear channel theory.

This paper represents a pioneering effort to analyze in a formal manner the

behavior of the time variant communications systems [15]. The linear time-invariant

systems theory was well known at that time; however, the characterization of time

variant systems was poorly understood in 1963. That year, P. Bello presented this

magisterial paper about characterization of randomly time-variant linear channels.

This paper has been used as reference work in countless papers in the communication

and systems branches. This paper was analyzed in detail to fully understand the

basis of time-variant channel characterization. This paper presents the main system

functions used as characterization tools for communication channels, establishing

mathematical relations among these functions. Fourier theory is a fundamental

mathematical analysis tool in this paper to establish this relations. Each function

is analyzed in a dual manner, both, in the time domain and frequency domains.

This paper demonstrates that time-variant linear channels may be character-

ized in a dual symmetrical manner in the time and frequency domains. Most of
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the system functions are discussed making use of circuit model interpretations or

representations for the time-variant linear channels. The relationship between these

system functions is demonstrated in a simple way with the aid of block diagrams

involving time-frequency duality and Fourier transformations. Other important con-

tribution of this paper is the establishing of relationships between the correlation

functions of the various system functions for the general randomly time-variant lin-

ear channel. This paper addresses three classes of channels of theorectical as well as

practical interest: the WSS channel, the US channel, and the WSSUS channel. The

WSS and US channels are shown to be (time-frequency) duals.

Relation to my thesis work: My thesis work is centered on the study of

MIMO ALS channels. This type of channel can be categorized as time-variant

double dispersive channels; so, this paper is extremely important in establishing the

foundations to develop a useful and accurate model. Most of the time-frequency

theory discussed by the author in this paper is employed in my thesis work to create

an analytic model for acoustic stochastic linear (ALS) time-variant systems. This

analytic model is converted into a computational model using finite-dimensional

linear operator theory and other mathematical and computational resources. In

this perspective, this paper established the essential foundation of my research.

Figure 3–1 illustrates, in block diagram form, the transformation processes be-

tween different representations of the system functions for time-variant linear chan-

nels [15].
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Figure 3–1: Relationship Between System Functions in Time-Variant Channels
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3.1.3 Information-Based Complexity

This paper is about Information-based Complexity (IBC) and how IBC “seeks

to develop general results about the intrinsic difficulty of solving problems where

available information is partial or approximate and to apply these results to specific

problems,” [16].

The field of complexity theory has improved many performance measurements

on the Turing and non-Turing models. A very useful non-Turing approach to the

complexity measurements is given by the Information-Based Complexity (IBC) ap-

proach. IBC has some very elaborated functional analysis tools. Given two infinite

dimensional normed linear spaces F and G and a map S : F → G, IBC studies

how such a map might be best expressed as a finite dimensional objects function

(relating the continuous real world with the discrete digital world).

Figure 3–2 illustrates the transition from the problem space F (continuous real

world) to analytic solution space G (analytic world) using a continuous operator S.

If the information operator N is applied on an instance of the problem space then,

it obtained a finite representation in Rn of this problem. Now, it is possible to apply

an algorithm operator φ on this finite representation and also possible to obtain an

approximate solution.

In general, when it is applied N to a f ∈ F abstractly represent the extraction

of information from f ; so, N is called an information operator. The operator φ rep-

resents the computational procedure (algorithm) to process the information N{f}

to approximate the solution S{f}. It is possible to define IBC how the mathemati-

cal paradigm that studies the problem of mapping of infinite dimensional spaces to

finite dimensional spaces. The numerical cost (complexity) is assigned to algorithm

φ. This work was interested in the smallest cost of φ for which

sup‖f‖≤1 (‖S{f} − φ{N{f}}‖ < ǫ) , (3.1)
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Figure 3–2: IBC Framework Spaces

for a given ǫ, where ‖.‖ is the norm in the space F and G. The focus is the

minimization of the cost, based on the information extraction and error estimation.

This paper highlights the fact computers work with finite dimensional objects.

Thus, the procedure followed in the computation would first involve a truncation in

the instance of the problem space treated (f ∈ F ) to something finite dimensional

which can be represented in a computer. For example, f may be represented through

its values at a finite set of points or through a finite number of coefficients in an

eigenfunction expansion, or a finite number of Fourier coefficients. In this context,

an algorithm φ is a mapping that transforms a truncated (discrete) problem into an

approximate solution. The complexity of this transformation is measured using as

reference a real number abstract machine. A numerical complexity can be assigned

to the algorithm φ, based on the types and number of operations (e.g., additions,

multiplications) the computation of φ performs.

This paper presents Information-based Complexity as a field of analytic (or

continuous) complexity theory, as opposed to combinatorial complexity (classical

o Turing complexity). In the classic complexity theory the cost of problems is
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associated essentially with the number of permissible operations required to solve

problems such as matrix inversion or multiplication. These combinatorial complexity

problems are important; but, analytic complexity has consolidated as a distinct

field. In the field of analytic complexity, the numerical bit operations do not play

a central role, and basic arithmetic operations are treated as primitive operations.

So, the approach in Information-Based Complexity is analytic rather than algebraic

or combinatorial.

Relation to my thesis work: My thesis work focus the study of Information-

Based Complexity as a tool to measure the computational complexity in Compu-

tational Signal Processing (CSP) frameworks. The use of this approach to analyze

the complexity is justified by the fact of that my problem space (continuous analytic

signals) must be truncated (quantizated) and discretized previous to the processing

stage on a digital computer. So, the signal processing algorithms work over trun-

cated information and produce approximate solutions. In this scenario, this paper is

important to contextualize the complexity analysis in my thesis work. The perspec-

tive in which the information is incomplete (truncated), noisy, and priced, describes

very well the nature of my thesis research problem.
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3.1.4 Improved RIP Analysis of Orthogonal Matching Pursuit

Matching Pursuit is a powerful heuristic to address compressive sensing prob-

lems [17]. The algorithm was designed as a statistical method for projecting multi-

dimensional data onto interesting lower dimensional spaces. It was then introduced

to the sparse approximation world in its non-orthogonal form Matching Pursuit

by Mallat. This paper presents an improved Restricted Isometric Property (RIP)

based performance guarantee to reconstruct T−sparse signals that asymptotically

approach the conjectured lower bound given in Davenport, et al., [18].

This article extends the state-of-the-art by deriving reconstruction error bounds

for the case of general non-sparse signals subjected to measurements of noise. The

author then obtained generalized results for the case ofK−fold Orthogonal Matching

Pursuit.

The author presents an empirical analysis suggesting that Orthogonal Matching

Pursuit (OMP) and K−fold OMP outperform other alternative compressive sens-

ing algorithms in average case scenarios. This work concluded that these matching

pursuit algorithms should perform roughly T 0.5 times worse than convex optimiza-

tion and Iterative Thresholding algorithms.

OMP is a greedy alternative to convex optimization that solves the under-

determined linear equation:

y = Φx, (3.2)

where the vector x is a sparse signal, the matrix Φ is a short, fat measurement

matrix, and the vector y is a small set of linear measurements of the signal. Only

sparse approximation performance guarantees have been derived for OMP. These

results depend on the coherence of the matrix Φ. The outcomes only bound the

error ‖y − ỹ‖2 where ỹ is the estimated signal, produced by an OMP algorithm,

which has a sparse representation in the column span of Φ.
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The convex optimization algorithms tend to be slow; but, their solutions have

very powerful error bounds based on a restricted isometric property. OMP works

locally by attempting to select one non-zero entry of x in each iteration. A mea-

surement matrix Φ satisfies a RIP of order T if there exists a constant 0 < δT < 1

such that (1− δT‖x‖
2
2 ≤ ‖Φx‖

2
2 ≤ (1 + δT ‖x‖

2
2)) for all signals x that are T−sparse.

The constant δT is called the restricted isometric number of order T .

The author clearly state the following important result: “An equivalent for-

mulation of the RIP is that for every indexing set I of size T , here the M × T

sub-matrix ΦI generated by selecting the T columns of Φ corresponding to I, and

satisfies: 1− δT ≤ Eigenvalues(Φ∗
IΦI) ≤ 1 + δT .”

K−fold Orthogonal Matching Pursuit. KOMP is almost identical to OMP

except for the fact that K atoms are selected per iteration instead of 1. KOMP

has two main advantages over OMP. The first one is speed: Given a T−sparse

signal, one may use KOMP to recover the signal in T/K iterations versus the

usual T iterations. Unfortunately, for accuracy, this method requires that all atoms

selected per iteration be correct. The second one is mutually exclusive with the first,

running T iterations of KOMP is selected a set S ′ of KT indexes where, with good

probability, the signal’s support set S is contained in S ′.

Relation to my thesis work: In my thesis work three algorithms were used

for parameter estimation in SISO and MIMO approaches. All of these algorithms

are based on matching pursuit greedy algorithms. The first algorithm used was Ba-

sic Matching Pursuit, the second was Orthogonal Matching Pursuit, and the third

was Least Square Recursive Matching Pursuit. The essence of these algorithms is to

avoid direct computation in the cases where the inverse problem is associated with a

sparse matrix. By exploding this condition is possible to reduce the computational

complexity derived of the algorithm. This paper is fundamental to gain understand-

ing about the theoretical foundations associated with this type of algorithms.



4. IBC & CSP Theoretical Frameworks

4.1 Introduction

This chapter deals with the integration of fundamental concepts in Information-

Based Complexity (IBC) and Computational Signal Processing (CSP). To the best

of my knowledge, this integration approach has not been proposed in the scientific

literature, up to this time. In stochastic systems, complexity measures such as

Shannon information and Kolmogorov probability entropies have been widely used in

communication and control systems; but, IBC has not been readily used as analysis

tool.

4.2 Foundations of Computing

Computing may be defined as the processing of abstract entities. Processing is

defined as a sequence of operations on a particular entity. An operation, in turn, is

defined as a functional action; that is, an action with a purpose. Computer Science

was developed in the past century and it reached a high formality level in the last

decades. The list of pioneers in this branch include Alan Turing, Kurt Gödel, Emil

Leon Post, Stephen Kleene, Alonzo Church, and John Hopcroft, among many others.

Many of them were mathematicians, others were logicians, and others were electrical

engineers. Their contributions allowed to give formalism to the nascent science of

computing. Computer science studies the information processing potentialities of the

theoretical systems called Finite State Automata (FSA). These are computational

models endowed with a set of mathematical abstract structures for representing and

processing information processes. Concepts such as computability, unsolvability,

complexity, and others, are attached to FSA theory.

32
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4.2.1 System or Machine Abstraction

Alan Turing is considered a precursor of the modern era of information. He

presented in a formal manner an abstract computational model. It is now called

the Turing Machine (TM). This theoretical model has been largely evaluated for

determining the scope of its computational capabilities, having reached a high degree

of acceptance. Many theoreticians consider the Turing Machine as the most powerful

computational model[19] among the existing discrete computational models. In this

work we adopt Sontag’s definition of a system or machine[20]. The formal Sontag’s

system or machine M is as follows:

M = (T ,X ,U , φ), (4.1)

where M is the system or machine, T is the set denoting time, X is the state space

of M , U is the control-value or input-value space of M , and φ is the transition

map of M .

In 1936, Alan Turing and Alonzo Church postulated that any existing compu-

tational model had the same algorithmic capabilities, or a subset of the capabilities

of the standard Turing Machine. This assertion is known as the Church-Turing The-

sis. Since then, many computational models have been proposed; however, it has

been always possible to show that their computational power was equivalent to the

Turing Machine computational power.

Many principles of modern computational theory were developed under the Tur-

ing Machine perspective, so basic issues as computational complexity have been stud-

ied using the Turing Machine model for evaluating and testing of algorithms. Under

this assumption, all computational resources in most digital computers are quanti-

fied using the Turing Machine model as the standard reference[21]. A consequence of

this approach is a complexity theory based on the Turing Machine model [22]. This

approach at addressing the complexity issues has been called classical complexity
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theory approach [23]. Also, it is a common belief that the classical approach is the

unique manner to address a large class of complexity problems.

Computational complexity is priorly evaluated using two main resources: time

and space. The classical complexity theory has categorized many computational

problems, based on a non-deterministic Turing Machine model, using a well known

taxonomy: deterministic polynomial time problems (P set), non-deterministic poly-

nomial time problems (NP set), non-deterministic polynomial complete (NP-complete

set), and non-deterministic polynomial hard (NP-hard set). Figure 4–4 shows the

NP taxonomy in case NP set is assumed to be not equal to the P set (this assertion

is only a conjecture).

The Turing Machine has been modified for trying to improve its computational

power. The original Turing Machine has an infinite tape, a read/write head, and this

head can read or write a single character at a time. Each change of state must be

a consequence of a mapping recorded in the transition’s function. Some variants of

the original Turing Machine include a two-tape machine, multi-tape machine, multi-

dimensional tape machines, among others. The theoreticians have shown that all

Turing Machine variants have the same computational power of the original Turing

Machine; i.e., these variants can solve the same set of problems that the original

Turing Machine it is able to solve. This fact validates the Church-Turing thesis. So,

the classical theory of computation considers computable any problem that can be

solved using a Turing Machine.

Beyond the problem of computability the variants of the Turing Machine have

shown another important issue: the computational complexity of a problem depends

on the computational machine used. The number of steps to resolve a problem

is different if we use an original Turing Machine instead of a multi-tape Turing

Machine. However, the issue can be more complex. If we decide to establish other

resources (different, say, to time) to measure complexity; e.g., energy or space used
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to resolve the problem; then, complexity measurements can depend on multi-variable

elements.

In general, complexity theory studies natural and artificial problems. It classi-

fies these problems according to defined taxonomies, measuring the computational

efficiency of various algorithms and computational paradigms. Finally, complexity

theory establishes comparative rules between the complexity measurements in each

case.

4.2.2 Complexity Classes

Complexity theory analyzes the most efficient known algorithms to resolve a

problem. Using the complexity measurement associated with an algorithm each

problem is classified into a complexity class. If the resource measured was time, then

the problem is classified into DTIME class, or NTIME class. The classification

depends on the type of Turing Machine required to reach the solution: Determin-

istic Turing Machines (DTM) or Non-deterministic Turing Machines (NTM). The

time complexity of an algorithm is determined by the number of steps employed

for reaching a solution as a function of the cardinality of the input data set. The

space complexity of an algorithm is the amount of memory used by it for reaching

a solution as a function of input data set cardinality. Analogously, a problem can

be classified into a space complexity class depending on the amount of memory used

by it for reaching a solution. The DSPACE and NSPACE classes are related to

deterministic and non-deterministic Turing Machines.
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Figure 4–1: Number of operations in n4, 22n, and n! complexities.

4.2.3 Finite-State Automaton

To model hardware systems it is required to introduce the notion of automa-

ton (automata in plural). An automaton is an abstraction that possesses all the

indispensable features of a digital computer system. This automaton receives in-

puts, produces outputs, may have memory storage, and makes decisions during the

transformation process from input to output.

A formal language is an abstraction of the general characteristics of program-

ming languages. A formal language consists of a finite set of symbols, called an

alphabet, and some rules of formation by which these symbols can be combined in

entities called strings. A string is a finite sequence of symbols. A formal language

is the set of strings generated using the formation rules. The basic computational

model, to process strings and decide whether they belong to a formal language, is the

finite state automaton (FSA). Some theoretical machines more complex than FSA
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can be found in the literature. We will use these theoretical machines to formulate

computational structures, and simulation environments like Field Programmable

Gate Arrays (FPGA) and other hardware simulation devices.

Formally, an automaton is a system D which recognizes strings s ∈ Σ∗, where

Σ is an alphabet, and Σ∗, called Kleene Star of Σ, is defined as the set of all strings

forming finite sequences whose symbols, come from Σ. The set Σ∗ include the empty

or null string λ. The strings “accepted” by D form a set L ⊆ Σ∗ and it become

a formal language. Thus, each automaton D recognizes a language contained in

Σ∗. This language is denoted D(L). The theoreticians are very interested in the

study about languages recognized by automata. The automata can be categorized as

deterministic and non-deterministic. A deterministic automaton is formally denoted

by a quintuple D = (Σ, Q, q0, F, A), where Q is a finite set of states, q0 ∈ Q is the

start state, F : Q × Σ → Q is a transition function, and A ⊆ Q is a set of accept

states. The dynamic in this kind of machines is simple. The automaton D receives

a input string s ∈ Σ∗ conformed by a finite sequence of elements of Σ, then starting

in state q0 each element si is read and the transition function F indicates a change

of state. If the last current state in D is qj ∈ A, then D accepts; however, if the last

current state in D is qk /∈ A then D rejects.

Figure 4–2: Graphical Representation of a Finite State Automaton
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Figure 4–2 shows a graphical representation of a finite state automaton (FSA)

that recognizes a formal languages on {0, 1}∗ whose strings end with the sequence

“11”.

4.2.4 Formal Definition of a Turing Machine

A Turing Machine can be defined in a formal manner as a quadruple

M = (Q,Σ, δ, q0), (4.2)

where Q is a set of states. This set must be finite and non-empty, i.e., any feasible

Turing Machine must have a finite number of states for a realizable implementation.

Among the states of Q we can find two special states: a accept state (qa, first state

in Q) and a reject state (qr, second state in Q). q0 ∈ Q and is called initial state.

The initial state can be any state in Q, so the minimum cardinality of Q must be

2. Σ is the alphabet of the machine. Any alphabet is a finite set of symbols. The

alphabet Σ must have at least a special symbol called blank symbol (⊔) and other

symbol to constitute strings. The sets Q and Σ must be disjoint sets. δ is a finite

collection of transition rules called transition function. Each transition rule maps a

tuple in (Q×Σ) to a tuple in (Q×Σ×{LEFT,RIGHT}). The transition function

δ can be considered the logical core of the Turing Machine. Each transition must

be read in the following manner: in a time t the Turing Machine M is in a state

qm ∈ Q and its read/write head reads from the tape a symbol sk ∈ Σ; then, M

changes to a state qn ∈ Q, the read/write head writes to the tape a symbol sl ∈ Σ,

and, finally, the head is moved one position to the RIGHT or LEFT over the tape.

Some variants of Turing Machines accept that the head stays in the same position on

the transition. But, this feature don’t add more computational power to the model.

Other Turing Machine variants add a new set Γ as alphabet tape; however, only one

alphabet set can represent, in a successful manner, the Turing Machine alphabet.

Each instruction is represented by a quintuple (qm, sk, qn, sl, A). Where A represents
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the direction of head’s movement (RIGHT or LEFT). A Turing Machine receives

as input a string s ∈ Σ∗ written over the tape and eventually halts in an accept

or reject state. The transition function, as previously defined, allows only, in each

step, a change of a state qm to a state qn. This transition function categorizes a very

important type of Turing Machine called deterministic Turing Machine (DTM). All

problems that can be resolved in polynomial time as a function of the input string

length using a deterministic Turing Machine are classified in a time complexity class

called P.

No all Turing Machines are deterministic Turing Machines. If the transition

function δ has in its co-domain elements of the powerset of Q instead of single

elements of Q, then we can say that δ is a non-deterministic transition function

and therefore the associated Turing Machine is called a non-deterministic Turing

Machine (NTM). Formally, N is a non-deterministic Turing Machine if its tran-

sition function δ performs a mapping from a tuple in (Q × {Σ} ∪ λ) to a tuple in

(P(Q) × Σ × {RIGHT, LEFT}). Where λ is the null string (λ ∈ Σ∗) and P(Q)

is the powerset of Q. The main consequence of λ-transitions is the occurrence of

spontaneous transitions; i.e., transitions triggered without any symbol read. Figure

4–3 illustrates a non-deterministic computation tree.

All problems that can be resolved in polynomial time using a non-deterministic

Turing Machine belong to time complexity class called NP. Another alternative

definition says that all problems whose solutions can be verified in polynomial time

belong to the NP class. Although any non-deterministic Turing Machine has an

equivalent deterministic Turing Machine, the procedure to perform the conversion

is not executed in polynomial time. So far it is clear that P ⊆ NP. But one of

the seven millennium prize problems proposed by the Clay Mathematics Institute in

2000 addresses the question if whether or not all problems in NP are also in P. It is

still an unanswered question. The NP-Hard class is the set of all decision problems
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Figure 4–3: Non-Deterministic Computation Tree

that contain the problems H , such as, any problem L ∈ NP can be “reduced” in

polynomial time to any H ∈ NP-Hard. This complexity class contains the decision

problems at least as difficult as the most hard NP problems.

Other special classes that derive from NP class are NP-Complete (NPC) and

NP-Hard (NPH) classes. Formally, if a problem A belongs to NP class and all

problems in this class can be reduced, using a deterministic Turing Machine, in

polynomial time to A, then A belongs to NPC class.

4.3 Classical Complexity Measures

In the classic complexity theory some notations are used for measuring the

complexity associated with an algorithm.

“Big O” notation is used in computer science, complexity theory, and mathe-

matics to describe the performance or complexity of an algorithm. Big O specifically

describes the worst-case scenario, and can be used to measure the execution time

required or the space used by an algorithm. For example, O(N) describes an algo-

rithm whose time execution will grow linearly and in direct proportion to the size
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Figure 4–4: Complexity Classes: Polynomial (P), Non-Deterministic Polynomial
(NP), NP-Complete, and NP-Hard

Big O Notation Type of Complexity
O(1) Constant
O(lon(n)) Logarithmic
O((log(n))c) Polylogarithmic
O(n) Linear
O(n2) Quadratic
O(nc) Polynomial
O(cn) Exponential
O(n!) Factorial

Table 4–1: “Big O” Notation Associated to Classical Complexity Class

of the input data set, but O(N2) represents an algorithm whose time execution is

directly proportional to the square of the size of the input data set.

Big O notation (also called Landau’s symbol) describes the asymptotic behav-

ior of a function when this function represents the amount of resources (time or

space) used by an algorithm to solve a given problem. Table (4–1) categorizes some

algorithms by their asymptotic behavior.
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4.4 Information-Based Complexity (IBC) Definition

We begin with the definition of IBC: “It is the study of the inherent difficulty

in solving problems for which only partial, noisy, and costly information is available.

Since information is partial and/or noisy, it causes uncertainty in the solution.” (see

[24]).

Continuous complexity theory gets its name from the models of mathematical

computation on which it is based. Modeling works inside a digital computer takes

center stage in complexity theory, and the complexity of problems is measured in

terms of bit operations using the Turing machine model. In IBC mathematical

analysis is used as the primary tool for modeling works instead of the combinatorial

techniques utilized in classical computational complexity.

In the continuous complexity model (or real-number model), real number op-

erations such as multiplication and function evaluation are defined as functional

primitives, and complexity analysis has a more analytic sense. The real number

model of computation is the basis for recent foundational work in computation the-

ory, and for older work on zero finding for polynomials and other equations. The

notion of partial information is an important element in the theory of continuous

computational complexity. Computations in numerical analysis attempt to model

infinite dimensional objects, while computers, deal with finite dimensions [25]. IBC

mainly focuses on infinite-dimensional problems, but there has been some work on

finite-dimensional and discrete problems.

Computational and numerical analysis problems can be reduced to computing

an output from an input. Define S to be the mapping from input to desired output.

For example, the input may consist of a function f on the unit interval. Information

N(f) about f might be values of f at a discrete set of points, a common information

set in numerical analysis. Desired output S(f) might range from the integral f =
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Figure 4–5: Traub-Werschulz IBC Framework

∫ 1

0
f(x)dx, to recovery of f itself (from partial information N(f)). The goal is then

to compute a very good approximation, such that the error is minimized.

The notion of partial information is central in computational solutions of mathe-

matical problems. Indeed there are only two ways to get one’s hands on the functions

and operators in numerical problems for which one seeks computational solutions.

The first is to describe them analytically or symbolically, manipulate them in exact

form until a solution is obtained, and finally extract the finite collection of numbers

we need to work with. The second and more common way is to start with infor-

mation N(f) about inputs in partial form as numbers we must do something with.

Thus N has filtered f into the finite dimensional form N(f). Figure 4–11 shows this

process [25]. Is there a better approach? We asked ourselves this question during

our research endeavor.
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IBC Trade-off

Information Cost Information
Uncertainity

Figure 4–6: IBC Trade-Off

Information-based complexity (IBC) is the theory that studies all subjects rel-

ative to complexity, based on real-numeric paradigms. IBC presents a trade-off that

is illustrated in Figure 4–6.

In general, four worlds are represented in IBC theory. Figure 4–9 is a depiction

of these four worlds as described by J.F. Traub and A.G. Werschulz in the monograph

entitled “Complexity and Information” and published in 1998 by Oxford University

Press [26]. We have adopted this four-world representation as a setting for our

proposed Computational Signal Processing modeling framework. However, we made

some slight changes to this representation in search for a better fit to our conceptual

framework. Our reformulation of Traub-Werschulz’s four-world representation is

depicted in figure 4–10. In our depiction we want to strongly emphasize the natural

versus the virtual worlds as well as the continuous versus the discrete computational

models. The complete process is illustrated in the Figure 4–7.

In this thesis we define a mathematical model as a set of mathematical expres-

sions which describe an aspect of the physical world. A main property of this set

is that it allows to make inferences about attributes of the aspect of the physical

world being described.

4.5 Assumptions of IBC

This thesis assumes that events are carried out in the physical world (or natural

world). These events may be modeled using physical laws and mathematical tools.
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Figure 4–7: Complete Transformation Process using Two Different Approaches

These models are mostly continuous models, expressed using equations and general

mathematical expressions. A computer simulation can be performed for verifying the

accuracy of the model. This simulation must be supported by a model of appropriate

computation. IBC has three principal assumptions about of information,

• the information is partial,

• the information is tainted, and

• the information is priced.

We deal with partial information when solving an infinite-dimensional problem

using a Turing computers. The reason is that the Turing computer can handle

only finite sets of numbers and finite sets of states. Infinite objects, such as real-

value functions, are replaced by mappings with finite co-domains. So, the values

of the functions are computed using round off techniques. Thus, the information is

now corrupted by round-off errors, measurement errors, or any other kind of errors

induced by the sampling and quantization processes. In this sense, the primary
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Figure 4–8: IBC Spaces. Ambiguity Function Case

Figure 4–9: Four Worlds Described by IBC Theory

cost of solving any problem centers on computing the functions values, and the

information is considered priced, expensive (computationally).

To motivate these assumptions about information, consider a continuous dy-

namical system. It consists of an equation that determines how the system evolves

over time and an initial condition. Assume that the equation depends on coeffi-

cients that are real functions of a real variable. Since a Turing computer can store

only a finite set of numbers, these functions must be replaced by such finite sets.

Therefore, we have only partial information about the equation of evolution and,

similarly, about the initial conditions.
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Figure 4–10: A Reformulation of the Four Worlds Described in IBC Theory

Figure 4–11: Modified Traub-Werschulz IBC Framework
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4.6 Application Fields for IBC

The applications of IBC typically involves multivariate problems of science and

engineering. Examples include high dimensional integration, ordinary and partial

differential equations, nonlinear optimization, function approximation, and ill-posed

problems. Although the focus has been on the complexity of computations, the

complexity of verification and implementation testing has also been studied.

In this section we present a very simple but illustrative example on the use of

IBC to assist in the selection of an algorithm to obtain an approximate solution to

the problem of computing the continuous-time Fourier transform of a finite energy

signal. We show how to obtain a solution using mathematical analysis; that is, we

provide a solution by analytical means. We also provide an approximate solution

by first obtaining partial information about the prescribed problem element and the

proceed to use a P-class algorithm to arrive at the solution.

Let Lp(R) represent the set of all complex-valued functions, say f , over the real

numbers R such that, for 1 ≤ p ≤ ∞, we have

‖f‖p
△
=

∫

t∈R

|f(t)|p <∞, (4.3)

where the integral expression is defined as a Lebesgue integral. For discrete

signals or sequences, say s, lp(Z) represents the set of all sequences such that, for

1 ≤ p ≤ ∞, we have

‖s‖p
△
=
∑

n∈Z

|s[n]|p <∞, (4.4)

where the sum is taken over the integers Z.

The set L∞(R) is conformed by all complex-valued functions, say f , over the

reals R, such that

‖f‖∞
△
= ess sup
︸ ︷︷ ︸

t∈R

|f(t)| <∞. (4.5)
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Let the set l∞(Z) represent the signal space of all sequences, say s, over the

integers Z, such that

‖s‖∞
△
= max|s| <∞. (4.6)

IBC Example: A good example, on the time-frequency analysis, is the compu-

tation of the Fourier transform of a continuous signal. Example: Computing Fourier

transform of h(t) = 2e−5tµ(t).

H(f) =

∫ ∞

−∞

2e−5tµ(t)e−j2πftdt = 2

∫ ∞

0

e−5te−j2πftdt, (4.7)

H(f) =
2

j2πf + 5
. (4.8)

Table 4–2: Matlab Computation for Two Approaches (Discrete and Real-Number)

N = 256; number of samples
T = 1/N ; sampling period
t = 0 : T : 1− T ; support region for h[t]
ht = 2 ∗ exp(−5 ∗ t); h[t] = 2e−5t

Hk = fft(ht); H [k] =
∑N−1

n=0 2e−5te−j2πkn

Hk = Hk(1 : end/2); symmetric spectrum
f = 0 : N/2− 1; support region for H(f)
Hf = N ∗ 2./(j ∗ 2 ∗ π ∗ f + 5); H(f) = N ∗ 2

j2πf+5

This example shows the computation of Fourier transform of the function

h(t) = 2e−5tµ(t). The Equation 4.8 represents the Fourier transform, H(f), of

h(t) in analytical form. The Table 4–2 presents documented Matlab pseudo-code

for both approaches (discrete and analytic real-number computation), for the same

transform. Hk is computed in discrete form (using a discrete ht), butHf is computed

using analytical resources. The results are compared in the Table 4–3.
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Table 4–3: Comparative Table of Results of Hk and Hf Transforms
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Continuous Fourier Transform H(f)

|H(f)|

Hk(1 : 5) Hf(1 : 5)

102.40 102.71

39.70 - j49.89 40.43 - j49.55

14.00 - j35.17 14.90 - j34.93

6.73 - j25.38 7.68 - j25.19

3.90 - j19.60 4.87 - j19.45

4.7 Works on IBC Field

A number of works have been written on IBC. The monograph entitled Com-

plexity and Information [25], of J.F. Traub, was published in 1998. Other works

include:

• Sikorski, K., Optimal Solution of Nonlinear Equations [27], Oxford University

Press, Oxford, UK, 1998.

• Keller, A., Quasi-Monte Carlo Methods for Photorealistic Image Synthesis [28],

Shaker, Aachen, 1998.

• Frank, K., Optimal numerical solution of multivariate integral equations [29],

Shaker, Aachen, 1997.

• Plaskota, L., Noisy Information and Computational Complexity [30], Cambridge

University Press, Cambridge, UK, 1996.
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• Werschulz, A. G., The Computational Complexity of Differential and Integral

Equations: An Information-Based Approach [31], Oxford University Press, New

York, 1991.

• Novak, E., Deterministic and Stochastic Error Bound in Numerical Analysis [32],

Lecture Notes in Mathematics, vol. 1349, Springer-Verlag, New York, 1988.
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Figure 4–12: Information Space to Solution Space Transformation

4.8 Computational Signal Processing Framework

The Introduction chapter of this thesis presented the concept of Computational

Signal Processing as a branch of Computational Complexity, the discipline which

studies the intrinsic difficulty of mathematically-posed problems and seeks optimal

means for their solution. In a more general sense, Computational Signal Processing

(CSP) deals with the treatment of physical signals using computational methods.

We reiterate that a computational method is defined as a non-empty structured set

of computational tools utilized to solve mathematically posed problems.
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Figure 4–13: Information Space to Evaluation Space Transformation

Extended concepts and methods relating fundamentals of Computational Sig-

nal Processing with Information-Based Complexity were formulated by Domingo

Rodŕıguez [33].

Figure 4–14: Computational Signal Processing (CSP) Framework
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Physical signals are manually modeled as stochastic processes. A physical signal

serves as the entity which carries the information about the state of a physical sys-

tem or phenomenon. In this context, a physical signal describes a physical quantity,

usually as a function of time or any other independent variable. Thus, a physi-

cal quantity is a physical property of a physical system or phenomenon that can be

quantified by measurement. Any entity is measurable if it can be expressed, through

an experimental estimation process, as a ratio of a prescribed unit of measurement.

The device performing the experimental estimation process may be defined as a sig-

nal processor which interacts with the physical system transforming the information

emanating form such system. For example, given an underwater communication

medium as a physical system, an acoustic transducer may serve as a signal proces-

sor which converts a physical quantity, in this case a pressure field signal, into an

stochastic voltage or current signal. It is advantageous to treat signals as belonging

to an ensemble, set, or family, with common attributes. Ensembles or sets of signals

with particular attributes are usually called signal spaces. In this research work I

studied band-limited acoustic signal sets as special linear signal spaces.

In this thesis work I also concentrated on the development of underwater com-

munication channel models to integrate with underwater point-target scattering

models in order to construct a computational modeling framework capable of charac-

terizing underwater moving objects modeled as point-targets. Franz Hlawatsch and

Gerard Matz have demonstrate that a Rayleigh fading channel model is appropriate

for describing attributes of a communication channel assumed to be wide-sense sta-

tionary (WSS), with uncorrelated scattering (US) [34]. The channel is also assumed

to be underspread; that is, the product of the average delay spread τ by the average

Doppler spread ν is much less than 1, i.e. τν << 1.
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Figure 4–15: Evaluation Space to Solution Space Transformation

These type of channels are usually analyzed under an information theoretic

setting. Thus, the underlying channel models are usually interpreted as information-

based models. Under a CSP framework, these models are interpreted as information-

based computational models. This important realization allowed us to naturally

introduce principles of information-based complexity (IBC) to further enhance these

communication channels models.

In this work, Figures 4–12, 4–13, and 4–15 represent an original contribution

in the field of IBC theory. The representation of a new “Evaluation Space” allows

to establish a relationship between IBC theory, approximation algorithms, and op-

timization theory. These branches have been used in independent manner in signal
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processing theory, but now, we present a unified framework to address signal pro-

cessing problems like channel parameter estimation. This problem has a very high

complexity, but we propose a approximate solution which minimizes the error to

acceptable levels.

This thesis work established a relation between the Traub-Werschulz (TW) IBC

Framework and the Computational Signal Processing approach developed during

this research. Figure 4–14 illustrates the CPS Framework, where the spaces F and

Q denote the same spaces in the TW IBC Framework.

4.9 Convex Optimization

This section establishes the foundations for parameter optimization in the chan-

nel estimation problem.

4.9.1 General Optimization Problem

A general optimization problem, has the following form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ..., m,
(4.9)

where the vector x = (x1, ..., xn), is called the optimization variable, the function

f0 : R
n → R, is called the objective function, the functions fi : R

n → R, i = 1, ..., m,

are called constraint functions, and the constants b1, ..., bm are the bounds for the

constraints.

Let x∗ be a vector in Rn, it is a solution of the optimization problem if it has

the smallest objective value among all vector that satisfy the constrains. So, for any

w with f1(w) ≤ b1, ..., fm(w) ≤ bm, we know that f0(w) ≥ f0(x
∗).
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4.9.2 Particular Optimization Problems

If we impose some additional constrains to the general optimization problem we

can obtain some very interesting particular optimization problems. In the following

sections we present some of them.

4.9.3 Linear Programming Problem

If the objective function f0 and the constraints functions fi, ..., fm are linear,

satisfying

fi(αx+ βy) = αfi(x) + βfi(y), (4.10)

for x, y ∈ Rn, and α, β inR.

If the referred functions don’t comply with the linear property then the opti-

mization problem is called nonlinear program.

4.9.4 Convex Optimization Problem

A convex optimization problem is one which the objective function f0, and the

constrain functions fi are convex, i.e., they satisfy the additional condition

fi(αx+ βy) ≤ αfi(x) + βfi(y), (4.11)

for x, y ∈ Rn, and α, β inR with α + β = 1, α ≥ 0, β ≥ 0.

If we replace the inequality in the Equation (4.11) with an equality, then we

obtain the Equation (4.10). So, the convex optimization is a generalization of the

linear programming problems.

4.9.5 Least-Square Problem

A least-square problem is an optimization problem with out constrains (m = 0),

and an objective which is a sum of squares of terms of the form aTi x− bi :

minimize f0 = ‖Ax− b‖22 =
k∑

i=1

(
aTk x− bi

)2
, (4.12)
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where A ∈ Rk×n, k ≥ n, aTi are the rows of A, and the vector x ∈ Rn is the opti-

mization variable.

The solution of the problem is attained resolving the following linear equations

system,
(
ATA

)
x = AT b, (4.13)

where x =
(
ATA

)−1
AT b.

Sometimes it is possible to solve the least-square problems by exploiting some

special structures in the matrix A, for example its sparsity. This special condition

will be essential in the channel parameter estimation problem. The least-square

problem can be resolved in O(n2k), where n is dimension of the vector x and k is a

constant such as k ≥ n. We usually solve the least-square problem much faster than

O(n2k) exploiting the sparsity condition. The least-square problem is fundamental

in regression analysis, and other parameter estimation and data fitting methods.

Its statistical interpretation is associated with maximum likelihood estimation of a

vector x, given linear measurements affected by a noise signal.

4.9.6 Approximation Algorithms

Many significant problems in computer sciences are so difficult to solve in an

optimal manner. Some of these problems belong to complexity class NP-Hard.

In some cases polynomial-time algorithms do not exist in order to reach an optimal

solution. Two examples can be the euclidean traveling salesman (ETS) problem and

the independent set problem. The first problem is defined as: given a set of points

on the plane, find the shorts path that visits all the points. The second problem is

defined as: given a graph G = (V,E), find a maximum-size independent set V ∗ ⊂ V .

A subset is called independent if no two vertices in the subset are connected by an

edge.
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Figure 4–16: Approximation Algorithm Approach

How to address this type of problems if we have not polynomial-time algorithms

available? Only if the cardinality of the input set is very small, an exponential-time

algorithm is useful. We can relax the optimal solution condition by near to optimal

solution guarantee.

In the case of the ETS problem, if the optimal solution, OPT, is computation-

ally very expensive, then, we can use an approximation algorithm φ that provides a

guarantee of φ(S) ≥ ρ×OPT, that is, a solution ρ-approximate to OPT. We call

an algorithm producing a solution that is guaranteed to be within some factor of the

optimum an approximation algorithm. Other approaches, like heuristic approaches,

can produce optimal solutions in some specific cases, but can not offer guarantee of

approximation to optimal solutions.

Any algorithm φ for a minimization problem is called a ρ-approximation algo-

rithm, with ρ > 1, if the algorithm φ(S) produces, for any input set S, a solution

whose value is at most ρ × OPT (S). But, any algorithm φ for a maximization

problem is called a ρ-approximation algorithm, with ρ < 1, if the algorithm φ(S)

produces for any input set S a solution whose value is at least ρ × OPT (S). Fig-

ure (4–16) shows the relation between an optimal algorithm and an approximated

algorithm. The factor ρ is called the approximation factor.

Three approaches for addressing NP-Hard problems can be:

• Brute-force algorithms.

– Develop clever enumeration strategies.
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– Guaranteed to find optimal solution.

– No guarantees on running time.

• Heuristics.

– Develop intuitive algorithms.

– Guaranteed to run in polynomial time.

– No guarantees on quality of solution.

• Approximation algorithms.

– Guaranteed to run in polynomial time.

– Guaranteed to find high quality solutions.

– Weakness: the need to prove a solution value is close to optimum, without

even knowing what optimum value is.

Among these options the approximation algorithms is a good choice in param-

eter signal estimation problems.



5. Acoustic Linear Stochastic Systems

5.1 Introduction

The study of underwater acoustic communications has been growing in recent

decades. The marked differences between the acoustic waves and electromagnetic

waves have allowed the development of a research field apart of traditional com-

munications. The characterization of underwater acoustic channels has become a

very important research subject. This problem is particularly interesting when the

transmission medium for the signals is shallow water.

Communication channels are modeled as linear time-variant (LTV) systems [35].

Based on this idea, many models have been proposed [36][37][38][39]. Each of them

tries to show the channel characteristics that are more representative of the objec-

tives pursued by each researcher. The underwater acoustic channels require partic-

ular attention on several particular aspects that belong to aquatic environments. In

the section ?? it will be presented some relevant channel models.

5.2 Linear Systems

A linear system is a mathematical abstraction of a system using linear opera-

tors. Linear systems regularly exhibit behavior and properties that are simpler than

non-linear systems. As a mathematical model or idealization, linear systems find

important applications in control theory, signal processing, and communications.

The propagation medium for wireless communication systems can be modeled by

linear systems or combinations of them.

Let T be a linear system such y1(t) = T{x1(t)}, and y2(t) = T{x2(t)}, then

must satisfy

αy1(t) + βy2(t) = T {αx1(t) + βx2(t)}, (5.1)

60
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for any scalar constants α, and β.

The operation of the resulting system depends of the input and it can be de-

scribed as a sum of responses to simpler inputs. For time-invariant systems, it is

the basis of the impulse response or the frequency response methods, which describe

a general input function x(t) in terms of unit impulses or frequency components.

A linear system can be characterized through of its impulse response (h(t)) or its

frequency response (H(f)).

Most practical systems are studied using linear models. If the nature of the

system is intrinsically non-linear then it is possible fragment it for analyzing linear

segments in each stage.

5.3 Stochastic Systems

The word stochastic became of a Greek root that means pertaining to chance.

This term is used to describe systems that present random or stochastic behavior.

This work deals with systems which one or more parts of them have randomness

associated with them. Unlike a deterministic system, a stochastic system does not

always produces the same output for a given input. A few components of systems

that can be stochastic in nature include stochastic inputs, random time-delays, noisy

disturbances, and even stochastic dynamic processes.

Stochastic systems is a branch of systems theory that deals with dynamic

and static systems, whose behavior are characterized by probability distributions

or spectral measures. Stochastic systems is applied in various areas within sci-

ence, such as control, communications and networks, signal processing, biology or

finance. Many of the mathematical abstractions employed within the theoretical

framework of stochastic systems were originated in an attempt to measure in an

accurate manner the treatment of probabilistic modeling and inference, random dy-

namical systems, and information. This discipline was established on the axiomatic
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approach to probability of Kolmogorov, the random noise model of Wiener and the

information measure of Shannon.

5.4 Time-Variant Systems

A Linear Time-Variant (LTV) system is a linear system whose behavior changes

over time. These systems are not time-invariant systems but if their rate of tem-

poral change is negligible during some period of time, then we can consider them

time-invariant systems for analytic purposes. In this category certain parameters

governing the system’s behavior change with time, so that the system could respond

differently to the same input at different times.

There are many well understood procedures for dealing with the response of lin-

ear time invariant systems, such as Fourier transforms. However, these procedures

are not valid for time-variant systems. When a system undergoing very slow time

variation in comparison to its time constants can usually be considered to be time

invariant for analytic purposes. These systems are close to time invariant on a small

scale (coherent time). An example of a time-variant system, that can be tried as

time-invariant, is a double dispersive channel, which has a time-invariant behavior

during a coherent time tC . Thus does not result in any behavior qualitatively differ-

ent from that observed in a time invariant system: tC-to-tC , they are effectively time

invariant, though tC to tC , the parameters may change. Other linear time variant

systems may behave more like non-linear systems, if the system changes quickly and

significantly differently between measurements. The following characteristics can be

associated to time-variant systems:

• They are time-dependent.

• They do not have an impulse response h(t) in the normal sense. The system can be

characterized by an impulse response except the impulse response must be known

at each and every time interval.
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• They are not stationary.

5.5 Study of Communication Systems

Both, electromagnetic and acoustic channels can be modeled as linear time-

variant systems, therefore we will start with the classical models developed for linear

time-variant (LTV) systems. On this point is mandatory to reference Bello works.

Bello offered big contributions in the field of linear time-variant systems characteri-

zation. So, its work is fundamental in channel characterization research area [15].

Table 5–1: Bello’s Kernel Functions

Input/Output Time Frequency

Time K1(t, s) K4(f, t)

Frequency K3(t, f) K2(f, l)

Bello presents a dual classification of the time-frequency functions for time-

variant systems characterization. Using the filter perspective, Bello formulates the

time-variant input-output relation at time-variant system in terms of four distinct

kernels, acting on the input signal z(t) in time domain or Z(f) in frequency domain,

both representations are equivalent (dual representations). Generated output is the

signal w(t) in time domain or W (f) in frequency domain. The four kernels are

presented in the Table 5–1.
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The input-output relationships are presented now,

w(t) =

∫

z(s)K1(t, s)ds (5.2)

W (f) =

∫

Z(l)K2(f, l)dl (5.3)

w(t) =

∫

Z(f)K3(t, f)df (5.4)

W (f) =

∫

z(t)K4(f, t)dt (5.5)

Starting in the relationship (5.2) and doing the variable change s = t − ξ we

obtain

w(t) =

∫

z(t− ξ)K1(t, t− ξ)dξ

w(t) =

∫

z(t− ξ)g(t, ξ)dξ, (5.6)

where g(t, ξ) = K1(t, t − ξ) is known as input-delay spread function because the

first operation is input-delay and the second operation is the complex exponential

product. On the other hand, if the first operation is the complex exponential product

and the second operation is the output-delay then, we obtain other input-output

relation which it is presented as follows:

w(t) =

∫

z(t − ξ)h(t− ξ, ξ)dξ, (5.7)

where h(t, ξ) = K1(t+ ξ, t) is known as the output-delay spread function. Equation

(5.6) is fundamental in this work. The kernel K1(t, s) is known as time-variant

impulse response.

Applying the time-frequency duality principle developed by Bello we can obtain

a complete set of time-frequency characterization functions for linear time-variant

channels [40]. All these functions allow us to visualize the channel in some particular

perspective, aiding in the modeling and estimation processes. The following are the

more important time-frequency system functions for linear time-variant channels.



65

Let H(f, ν) = K2(f, f−ν) and G(f, ν) = K2(f+ν, f) be variable substitutions,

then

W (ν) =

∫

Z(f − ν)H(f, ν)df (freq-freq) (5.8)

W (f) =

∫

Z(f − ν)G(f, ν)dν (freq-freq), (5.9)

where H(f, ν) and G(f, ν) are known as input-Doppler spread function and output-

Doppler spread function respectively. These functions are dual functions of input-

delay spread function g(t, ξ) and output-delay spread function h(t, ξ). The kernel

K2(f, l) is known as bi-frequency function.

In the same manner, the kernels K3(t, f) and K4(f, t) can be transformed to

K3(t, f) = e−j2πftT (f, t) and K4(f, t) = e+j2πftM(t, f), and then, replaced in equa-

tions (5.4) and (5.5), where it is possible appreciate the same time-frequency dual

treatment applied to K1(t, s) and K2(f, l), we can obtain the following input-output

relations

w(t) =

∫

Z(f)T (f, t)e+j2πftdf (freq-time) (5.10)

W (f) =

∫

z(t)M(t, f)e−j2πftdt (time-freq), (5.11)

where T (f, t) andM(t, f) are known as time-variant transfer function and frequency-

dependent modulation function, and these are time-frequency dual functions.

Using as reference Equations (5.9) and (5.10) and applying the time-frequency

duality principle, it is possible to establish a relation between the time-variant trans-

fer function T (f, t) and output-Doppler spread function G(f, ν) as follow

T (f, t) =

∫

G(f, ν)e+j2πνtdν. (5.12)
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Similarly combining Equations (5.7) and (5.11) it is possible to establish a rela-

tion between the frequency-dependent modulation function M(t, f) and the output-

delay spread function h(t, ξ) as follows:

M(t, f) =

∫

h(t, ξ)e−j2πftdξ. (5.13)

Finally, two very important time-frequency characterization functions for linear

time-variant channels are presented. These functions are the delay-Doppler spread

function U(ξ, ν) and the Doppler-delay spread function V (ν, ξ). Both establishes

very important input-output relations for linear time-variant channels. These func-

tions are defined as:

U(ξ, ν) =

∫

g(t, ξ)e−j2πνtdt (5.14)

V (ν, ξ) =

∫

H(f, ν)e+j2πξfdf (5.15)

or in equivalent manner

g(t, ξ) =

∫

U(ξ, ν)e+j2πνtdν (5.16)

H(f, ν) =

∫

V (ν, ξ)e−j2πξfdξ, (5.17)

where g(t, ξ) and H(f, ν) are the input-delay spread function and the input-Doppler

spread function respectively. Substituting Equations (5.16) and (5.17) in Equations

(5.6) and (5.8) respectively is possible to obtain the following input-output relations

w(t) =

∫ ∫

z(t− ξ)U(ξ, ν)e+j2πνtdνdξ (5.18)

W (f) =

∫ ∫

Z(f − ν)V (ν, ξ)e−j2πξfdξdν. (5.19)

Figure (5–1) shows the relationship between the main time-frequency character-

ization functions for linear time-variant (LTV) channels. The direct Fourier operator

is denoted using the symbol Fv with a subscript v that denote the variable on the
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transformation. Similarly the symbol F−1
v denote the inverse Fourier operator and

the subscript v denote the variable on the transformation.

Figure 5–1: Time-Frequency System Functions for LTV Channels
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Other very important relationship must be clearly established between the

input-delay spread function g(t, ξ), the delay-Doppler spread function U(ξ, ν), and

their duals functions the output-Doppler spread function G(f, ν), and the Doppler-

delay spread function V (ν, ξ). Figure 5–2 illustrates this relation.

Figure 5–2: Relationship Between Delay-Doppler Spread Function and the Kernels

K1(t, s) and K2(f, l)

The relationship between system functions was extended to express the Fourier

relationship existing between three of most important bi-dimensional functions. This

time-frequency functions are widely discussed in the scientific literature. They are

the Ambiguity Function (Ax), the Wigner Distribution (Wx), and the Correlation
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Function (Rx). Figure 5–3 illustrates the relationship between the Ax, Rx, and Wx

functions. This relationship was used as starting point, in this thesis work, to estab-

lish a new extended relation that include the Delay-Doppler Spread Function (UX).

The purpose to extend this relation is to create the basis to use the Delay-Doppler

Spread Function (Ux, known in some articles as Scattering Function) as surrogate

estimation function instead as the impulse response h(t) (or its equivalent LTV

Input-Delay Spread function (g(t, τ)). The reason behind this change is sustained

by the fact of the functions h(t) or g(t, τ) are time-dependent only. This function

don’t consider the Doppler effect on the channel behavior. So, we need to introduce

a new “surrogate” function that considers the Doppler effect in its mathematical

description. This function is the “scattering function”. It is represented in this

thesis work by the Delay-Doppler Spread Function Ux(ν, ξ).

Figure 5–3: Relationship Between the Ambiguity Function, the Wigner Distribution,

and the Correlation Function

Inside the estimation process the main function used to get the channel pa-

rameters was the Delay-Doppler Spread Function Ux(ν, ξ). This function establishes

a binding relationship between the time and frequency behaviors in a MIMO ALS

Channel. Figure 5–4 illustrates the new extended relationship, presented in this
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work as a original contribution, between the Ambiguity Function, the Wigner Dis-

tribution, the Correlation Function, and the Delay-Doppler Spread Function.

Figure 5–4: Enhanced Diagram Depicting Relationship Between the Ambiguity Func-

tion, the Wigner Distribution, the Correlation Function, and the Delay-Doppler

Spread Function U(ν, ξ).

5.6 Estimation Using a Parallel Approach

5.6.1 The Channel as an Operator

An acoustic channel can be modeled as an acoustic linear stochastic (ALS)

system. Under a discrete perspective both, the input signal z[m] and the output

signal w[m] belong to a signals space denoted as l2(ZM), where M is the length of

the signals and these can be represented using one-dimensional vectors.

In terms of vector spaces, an operator is a mapping from one vector space or

module to another. Considering an ALS channel as a mapping from an input signal

z to an output signal w is clear to intuit that the action of the channel on the input

signal for mapping to the output signal can be modeled as an operator. Having

defined the ALS channel as a linear system we can infer that the channel can be

represented as a linear operator. This quality gives the channel a number of features

and very desirable properties for easier analysis.
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We denote now the ALS channel as the continuous linear system T , and the

channel input-output relationship will be expressed as:

w(t) = T {z(t)}, t ∈ R, w, z ∈ l2(R), (5.20)

where T is a linear system, representing the action of an ALS channel on the input

signal z(t) for producing the output signal w(t), and l2(R) is a signals space of all

continuous signals with finite energy.

The more important consideration when we accept the channel as a discrete lin-

ear operator is the possibility of representation using a finite dimensional matrix H ,

allowing to develop computational approaches for channel modeling and estimation,

exploiting the fast algorithms for matrix treatment. This consideration is essential

in this work, and the SISO (single-input single-out) ALS channel behavior under

operators theory perspective is modeled as:

w = Hz+ n, (5.21)

where n, w, and z are one-dimensional vectors belong to the signals space l2(ZM)

and represent noise, output sugnal, and input signal respectively; and H represents

the channel matrix.

5.6.2 Characterization Function for an ALS channel

In the case of linear time-invariant (LTI) systems, the impulse response h(t)

characterize them in unequivocal manner. By definition h(t) is the system response

to the δ(t), known as impulse function. So,

h(t) = T {δ(t)}, t ∈ R, h ∈ l2(R). (5.22)

The output of a LTI system is given by:

w(t) =

∫ ∞

−∞

z(ξ)h(t− ξ)dξ, t, ξ ∈ R;w, z ∈ l2(R), (5.23)
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where the integral operation is known as convolution and the integration variable ξ

represents a temporal displacement, shift or delay.

The convolution operation admits commutative property. Another manner to

write the Equation (5.23) is

w(t) = (z ∗ h)(t), t ∈ R, w, z ∈ l2(R). (5.24)

The ALS channel input-output relationship is given by:

w(t) =

∫ ∞

−∞

z(t− ξ)g(t, ξ)dξ, t, ξ ∈ R, z, g, w ∈ l2(R). (5.25)

In this case, the input-delay spread function g(t, ξ) is a function of time t and

delay ξ, for adapting to time-variant system behaivor, so the new characterization

function g(t, ξ), for ALS systems is formulated as:

h(t, ξ) = T {δ(t− ξ)}, t, ξ ∈ R, h ∈ l2(R). (5.26)

Using the Bello nomenclature we call the kernel function h(t, ξ) the time-variant

impulse response [15]. But we will substitute the kernel function h(t, ξ) by g(t, ξ)

and we will call it input-delay spread function, that will be the ALS channel char-

acterization function.

Figure (5–5) shows the characterization functions h(t) and g(t, ξ) for LTI and

ALS systems.
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LTI System

ALS System

Figure 5–5: Functions h(t) vs. g(t, ξ): (a) LTI Systems (b) ALS Systems

In the spectral domain the Equation (5.24) can be reformulated as:

W (ω) = F{(z ∗ h)(t)} = Z(ω)H(ω),

ω ∈ R, W,H, Z ∈ l2(R), (5.27)

where F represents the Fourier operator and W (ω), Z(ω) and H(ω) are the Fourier

transforms of w(t), z(t) and h(t) respectively. Equations (5.24) and (5.27) repre-

sent the convolution theorem, that shows the duality of convolution and Hadamard

product in time and frequency domains.

5.6.3 Coherence Time TC and Coherence Bandwidth BC in the Channel
Modeling

In the practice, although one ALS channel to be considered a time variant

system, in where the characterization function g(t, ξ) change over the time, the more

adequate approach for modeling and estimation considerations is assume that the

ALS channel is time-invariant in a time period called coherence time (TC). During

the coherence time the parameter values of the input-delay spread function g(t, ξ)

stay constants. This assumption allows to resolve the input-output relationship as

it is expressed in the (5.25) using a convolution operation.
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The ALS channels are considered doubly dispersive because their behavior

change in time and in frequency. In dual manner the ALS channel can be treated as

LTI channel if the frequency changes do not exceed a specific value called coherence

bandwidth BC .

The assumption of the existence of a coherence time TC and a coherence band-

width BC leads to the problem of establishing as accurate as possible, what is the

value of those coherence time and coherence bandwidth. These parameters regulate

the maximum amount of samples that can be processed using a constant input-delay

spread function g(t, ξ). In ALS channels the principal considerations for calculate

these parameters are associated with the propagation speed of the sound in the water

(approx. 1, 500mts
seg

), the effect of the high frequencies in the underwater propagation

of the acoustic waves and other factors as signal to noise ratio (SNR).

Beaujean and LeBlanc analyzed the relation between the coherence time and co-

herence bandwidth in the context of channel characterization and underwater acous-

tic systems classification [41]. Two main types of fading channels can be classified

using the TF product (time spread and frequency spread) of the channel. When

this product is greater than 1 then the channel is considered an overspread channel

and otherwise the channel is considered an under-spread channel. This classification

allows to do previsions in order to adequately model to the nature of the different

channels.

5.7 Implementation Results

The following graphs describe implementation results obtained through the CSP

modeling of imaging sonar and scattering sub-systems when interacting with diverse

pulse waveforms, in particular, rectangular pulses, sinusoidal pulses, and linear chirp

pulses.
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ISS System acting on two nearby Scatterers using Square Pulses

Figure 5–6: ISS System: Two Nearby Scatterers using Square Pulses.

ISS System acting on two nearby Scatterers using Square Pulses

Figure 5–7: ISS System: Two Nearby Scatterers using Square Pulses.

ISS System acting on two nearby Scatterers using Sinusoidal Pulses

Figure 5–8: ISS System: Two Nearby Scatterers using Sinusoidal Pulses.

ISS System acting on two nearby Scatterers using Sinusoidal Pulses

Figure 5–9: ISS System: Two Nearby Scatterers using Sinusoidal Pulses.
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ISS System acting on two nearby Scatterers using Chirp Pulses (MMPP)

Figure 5–10: ISS System: Two Nearby Scatterers using Optimized Chirp Pulses
(MMPP).

ISS System acting on two nearby Scatterers using Chirp Pulses

Figure 5–11: ISS System: Two Nearby Scatterers using Optimized Chirp Pulses
(MMPP).

ISS System acting on two nearby Scatterers using Square Pulses

Figure 5–12: ISS System: Two Nearby Scatterers using Square Pulses.

ISS System acting on two nearby Scatterers using Square Pulses

Figure 5–13: ISS System: Two Nearby Scatterers using Square Pulses.
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ISS System acting on two nearby Scatterers using Sinusoidal Pulses

Figure 5–14: ISS System: Two Nearby Scatterers using Sinusoidal Pulses.
ISS System acting on two nearby Scatterers using Sinusoidal Pulses

Figure 5–15: ISS System: Two Nearby Scatterers using Sinusoidal Pulses.
ISS System acting on two nearby Scatterers using Chirp Pulses (MMPP)

Figure 5–16: ISS System: Two Nearby Scatterers using Optimized Chirp Pulses
(MMPP).

ISS System acting on two nearby Scatterers using Chirp Pulses

Figure 5–17: ISS System: Two Nearby Scatterers using Optimized Chirp Pulses
(MMPP).



6. MIMO Channel Parameter Estima-
tion Algorithms Implementation

6.1 Introduction

In this chapter we present the work associated with thematching pursuit Greedy

algorithm implementation to estimate MIMO Channel parameters. The character-

ization channel function used in this thesis is the Delay-Doppler Spread Function

U(τ, ν). This function plays the role of surrogate function of the Input-Delay Spread

Function that is the impulse response of the acoustic linear stochastic (ALS) chan-

nels. The parameters to be estimated are the time-delays and the Doppler-shift

associated with the Delay-Doppler Spread Function. This estimation work must be

carried out in a fraction of time correspondent to the coherence time TC , time in

which the impulse response functions is assumed as constant. Therefore, the esti-

mation of these parameters constitutes a fundamental stage in communication and

sonar problems.

6.2 Channel Configurations

To analyze this problem we start by presenting the SISO, MISO, and SIMO

problems. The idea behind this approach is to visualize the algebraic structures

in each case, for generalizing the structures in the MIMO case. Each problem

has a particular matrix-vector formulation. These formulations allow us to develop

data structures and procedures appropriates to address the efficient estimation of the

problem. Another important objective in this chapter is associated with establishing

the tensor matrix structures. These structures open an interesting field of study.

Regularities in the matrix structures can be exploited for improving the algorithms.

This thesis exploits the matrix-vector formulations and sparsity properties, but many

other regularities can be reviewed and known to develop new algorithms.
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Figure 6–1: Schematic of SISO Channel System

6.2.1 SISO Case

SISO case has just one transmitter transducer and one receiver transducer.

Equation (6.1) shows the input-output relation in the SISO case.

w = z ⊛K h = C{z}h = Zh,Z ∈ l2(ZK × ZK), (6.1)

where z ∈ l2(ZK) is the transmitted signal, h ∈ l2(ZK) is the impulse response of the

channel, w ∈ l2(ZK) is the received signal, ⊛K is the cyclic convolution operator of

order K, and C is the circulant operator. Equation 6.1 shows a typical input-output

relation in a linear and time-invariant system (a filter).
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Figure 6–1 illustrates a SISO system. The matrix-vector representation of the

problem is presented in Equation (6.2) which shows the first relevant matrix struc-

ture known as circulant matrix
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. (6.2)

In training mode, some series of predefined pulses z are transmitted. These

pulses are compared with the received signal w for characterizing the SISO channel

using the inverse relation shown in Equation (6.3).

h = Z†w, (6.3)

where the vector h ∈ l2(ZK), the matrix Z ∈ l2(ZK×ZK), and the vector w ∈ l2(ZK).

The computational complexity, under direct computation approach, associated

with this problem is O(K3) and it is given by the complexity of the inverse operator

acting over the matrix Z of dimension K × K, and the complexity of the matrix-

vector product of the vector w of length K. Therefore, the dominant complexity is

O(K3), where K is the number of samples in the impulse response h(t).

6.2.2 MISO Case

MISO case has M transmitter transducers and just one receiver transducer.

Equation (6.4) shows the input-output relation in the MISO case.

w =
∑

i∈ZM

zi ⊛K hi =

(
⊔

i∈ZM

C{zi}

)(
∨

i∈ZM

hi

)

= Zh, (6.4)

where zi ∈ l2(ZK) is the i−th transmitted signal, hi ∈ l2(ZK) is the i−th impulse

response, w ∈ l2(ZK) is the received signal, ⊛K is the cyclic convolution operator
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Figure 6–2: Schematic of MISO Channel System

of order K,
⊔

is the horizontal matrix concatenation operator,
∨

is the vertical

matrix concatenation operator, Z ∈ l2(ZK × ZKM) is the input channel matrix,

h ∈ l2(ZKM) is the impulse response channel vector, and C is the circulant operator.

Figure 6–2 illustrates the MISO system. A matrix-vector representation is

shown in Equation (6.5).
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(6.5)

In training mode, some series of predefined pulses z are transmitted. These

pulses are compared with the received signal w for characterizing the MISO channel
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using the inverse relation shown in Equation (6.6).

h = Z†w, (6.6)

where Z ∈ l2(ZK × ZKM) is the input channel matrix, and h ∈ l2(ZKM) is the

impulse response channel vector.

The computational complexity, under direct computation approach, associated

with the MISO estimation problem is O((KM)3 + 2K3M2)) = O((KM)3), and it

is given by the complexity of the pseudo-inverse operator acting over the matrix

Z of dimension K ×KM , and the complexity of the matrix-vector product of the

vector h of length KM . Therefore, the dominant complexity is O((KM)3), where

K is the number of samples in the impulse response h(t), and M is the number of

transmitter transducers.

6.2.3 SIMO Case

Figure 6–3: Schematic of SIMO Channel System
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SIMO case has just one transmitter transducer, but N receiver transducers.

Equation (6.7) shows the input-output relation in the SIMO channel system.

w =
∨

i∈ZN

z ⊛K hi =

(
⊕

i∈ZN

C{z}

)(
∨

i∈ZN

hi

)

= (IN ⊗ C{z})

(
∨

i∈ZN

hi

)

= Zh, (6.7)

where z ∈ l2(ZK) is the transmitted signal, hi ∈ l2(ZK), i ∈ ZN is the i−th im-

pulse response, wi ∈ l2(ZK), i ∈ ZN is the i−th received signal, ⊛K is the cyclic

convolution operator of order K,
∨

is the vertical matrix concatenation operator,

Z ∈ l2(ZKN×ZKN ) is the input channel matrix, h ∈ l2(ZKN) is the impulse response

channel vector, w ∈ l2(ZKN) is the output vector, and C is the circulant operator.

Figure 6–3 illustrates the SIMO system. A matrix-vector representation is

shown in Equation (6.8).
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(6.8)

In training mode, some series of predefined pulses z are transmitted. These

pulses are compared with the received signals wi, i ∈ ZN for characterizing the
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SIMO channel using the inverse relation showed in Equation (6.9).

h = Z†w, (6.9)

where Z ∈ l2(ZKN × ZKN) is the input channel matrix, h ∈ l2(ZKN) is the impulse

response channel vector, and w ∈ l2(ZKN) is the output vector.

The computational complexity, under direct computation approach, associated

with the SIMO problem is bounded byO((KN)3+2(KN)3) = O((KN)3+2(KN)3),

and it is given by the complexity of pseudo-inverse operator acting over the matrix

Z of order KN×KN , and the complexity of the matrix-vector product of the vector

h of length KN . Therefore, the dominant complexity is O((KN)3), where K is the

number of samples in the impulse response h(t), and N is the number of receiver

transducers.

6.2.4 MIMO Case

Figure 6–4: Schematic of MIMO Channel System

MIMO case hasM transmitter transducers, and N receiver transducers. Equa-

tion (6.10) shows the input-output relation in the MIMO channel system.

w =

[
⊔

i∈ZM

(
⊕

j∈ZN

C{zi}

)][
∨

i∈ZN

(
∨

j∈ZM

hi,j

)]

=

[
⊔

i∈ZM

(IN ⊗ C{zi})

][
∨

i∈ZN

(
∨

j∈ZM

hi,j

)]

= Zh, (6.10)
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where zi ∈ l2(ZK), i ∈ ZM is the i−th transmitted signal, hi,j ∈ l2(ZK), i ∈

ZN , j ∈ ZM is the ij−th impulse response, wi ∈ l2(ZK), i ∈ ZN is the i−th re-

ceived signal, ⊛K is the cyclic convolution operator of order K,
∨

is the vertical

matrix concatenation operator,
⊔

is the horizontal matrix concatenation operator,

Z ∈ l2(ZKN × ZKMN) is the input matrix, h ∈ l2(ZKMN) is the impulse response

channel vector, w ∈ l2(ZKN) is the output vector, and C is the circulant operator.

Figure 6–4 illustrates the MIMO system. A matrix-vector representation is

shown in Equation (6.11).
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(6.11)

In training mode, some series of predefined pulses zi, i ∈ ZM are transmitted.

These pulses are compared with the received signals wj, j ∈ ZN for characterizing
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the MIMO channel using the inverse relation showed in Equation (6.12).

h = Z†w, (6.12)

where Z ∈ l2(ZKN × ZKMN) is the input matrix, h ∈ l2(ZKMN) is the impulse

response channel vector, and w ∈ l2(ZKN) is the output vector.

The computational complexity, under direct computation approach, associated

with the MIMO problem is bounded by O((KMN)3+2(K3N3M)) = O((KMN)3),

and it is given by the complexity of pseudo-inverse operator acting over the Z ma-

trix of dimension KN ×KMN , and the complexity of the matrix-vector product of

the vector w of length KMN . Therefore, the dominant complexity is O((KMN)3),

where K is the number of samples in the impulse response h(t), M is the number

of transmitter transducers, and N is the number of receiver transducers. This com-

plexity may seem small, however, if we consider some typical values (in an average

case) to M = 16, N = 16, K = 16, 536 then it is possible to obtain a number of

floating point operations estimated, using complex variables, of 1.5 × 1020 floating

point operations. This number of floating point operations must be carried out in a

fraction of the coherence time TC . The coherent time TC in shallow water scenarios

is on the order of tenths of milliseconds. So, MIMO estimation problem is very hard,

and other computational approaches are required. This thesis work explores the use

of matching pursuit greedy algorithm for addressing the MIMO channel estimation

problem.
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6.3 Delay-Doppler Estimation Approaches

6.3.1 Delay-Doppler SISO Approach

The first channel parameter estimation problem is addressed under the Single-

Input Single-Output (SISO) assumption; it is, considering just one transmitter trans-

ducer, and one receiver transducer. In this scenario, a determined number of scatter-

ers L are present between the transmitter and receiver transducers. These scatterers

are considered point targets scatterers (in opposition to extended targets scatterers)

in this thesis work.

Other important aspect to consider is the eventual movement of the scatter-

ers and/or the transmitter and receiver transducers. This movement introduces a

new effect on the model. This effect is called Doppler effect, and it is expressed as

frequency shifts acting over each input signal z(t). These frequency shifts are asso-

ciated with each scatterer. If the ratio between the bandwidth of the transmitted

signal z(t) and the propagation velocity of signals on the medium c is very small,

this effect is negligible. However, due to the velocity of sound on the water, the

Doppler effect is really significant in this scenario.

Under SISO assumption, we can express the output signal w(t) as the sum of

L copies of signal z(t) with time-delay ξl, and with frequency-shift (Doppler effect)

νl, and scaled by respective attenuation factors αl. Therefore,

w(t) =
∑

l∈ZL

αlz(t− ξl)e
+j2πνlt + n(t),

t ∈ R, w, z ∈ l2(R), (6.13)

where αl ∈ C are the attenuation factors for each input signal, ξl, νl ∈ R are the

time-delays and frequency-shifts associated with each scatterer l (ξ0 and ν0 can be

considered zeros), and n(t) is a real-valued independent wide sense stationary (WSS)

Gaussian stochastic process that represents noise.
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This formulation captures the more important aspects of a physical realization

of a underwater ALS SISO channel.

SISO

ALS Channel 

with L Scatterers

Figure 6–5: ALS Channel under SISO Assumption

Under SISO assumption it is possible to obtain the impulse response of the

underwater ALS channel substituting the input signal z(t) by the impulse function

δ(t) in Equation (6.13). Therefore, we obtain

h(t, ξ) =

L∑

l=0

αlδ(t− ξl)e
+j2πνlt,

ν, t, ξ ∈ R, l ∈ ZL, h ∈ l2(R), (6.14)

where h(t, ξ) (kernel function) is the time-variant impulse response of the underwater

ALS channel.

It is the most simple case on the underwater ALS model. Impulse response

is formulated under the SISO assumption. In the next section, we address the

problem of the matrix-vector formulation for ALS channel input-output relation,

which establishes the mathematical foundation for the estimation process.
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6.3.2 Estimating a Delay-Doppler SISO ALS Channel

A general continuous formulation to SISO ALS channel input-output relation-

ship is shown as follows:

w(t) =

∫

ξ∈R

z(t− ξ)g(t, ξ)dξ + n(t), (6.15)

where z(t) ∈ l2(R) is the input signal, w(t) ∈ l2(R) is the output signal and g(t, ξ) ∈

l2(R×R) is the Input-Delay Spread Function (used in this thesis work as the impulse

response of Delay-Doppler ALS channel), and n(t) ∈ l2(R) is the noise signal.

In the next stage, the sampling operator is applied to convert the continuous

model in a discrete model. This is the first action required to build a computational

model. In this case, we call TS to the sampling time. Now, we choose d to represent

the time discrete variable. So, the new formulation is shown as follows

w(kTS) =
∑

d∈ZD

z(kTS − ξd)g(kTS, ξd) + n(kTS), (6.16)

where k ∈ ZK , K is the number of samples in the windows, D is the number of

delays in the ALS channel, and ξd represent equidistant time-delays. We assume

that statistically the ALS channel is a WSSUS (wide-sense stationary uncorrelated

scattering) channel, and the ξV−1 is very close to the channel delay spread TDelay.

For estimation purposes, the parameter K must be sufficiently large for offering a

good resolution to detect time-delays in the channel.

Making a continuous-to-discrete conversion, we reformulate Equation (6.16) as

w[k] =
∑

d∈ZD

z[k − ξd]g[k, ξd] + n[k], (6.17)

where D is the number of time delays.

The time among 2 consecutive delays is denoted as ∆ξ. We considerate that

∆ξ = TS for simplicity purposes. This assumption allows to establish that each ξd

shift corresponds to a z[k] shift. In any case, ∆ξ must be greater or equal to TS, and
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∆ξ must be a multiple of TS preferably. The principal purpose to establish these

restrictions is to reach more mathematical simplicity, and reduce the complexity

derived by scaling processes. Other important assumption is that time spread TDelay

must be less or equal to coherence time TC .

In this moment, we must remember that Input-Delay Spread Function g(t, ξ)

stays constant during coherence time TC , and so, it stays constant during time spread

TDelay. Therefore, g[k, ξd] could be considered as g[k] in the equation (6.17). Under

operators theory perspective, the operation z[k − ξd] in (6.17) can be rewritten as

z[k − ξd]→ Sξd{z[k]}, where S is the shift operator, and ξd is used as parameter of

displacement. So, Equation (6.17) can be reformulate as:

w[k] =
∑

d∈ZD

Sξd{z[k]}g[k, ξd] + n[k]. (6.18)

Each linear operator leads to a matrix-vector representation. Sξd{z[k]} can

be formulated in matrix-vector representation as (Sξdz)[k], where Sξd is the matrix

representation of the shift operator Sξd . Substituting (Sξdz)[k] by the vector cξd [k],

and remembering that Input-Delay Spread Function g[k, ξd] stays constant during

time spread TDelay we can reformulate Equation (6.18) as:

w[k] =
∑

d∈ZD

cξd[k]g[d] + n[k]. (6.19)

Making a full matrix-vector representation we obtain:

w = Cg + n, (6.20)

where w, and n are the K × 1 vector representations of w[k], and n[k] respectively,

g is a vector of order D representing g[d], and C is the K × D compact matrix

representation of cξd[k].

ALS channels are doubly dispersive channels. Therefore, these channels suffer

from delay-Doppler spreading. Therefore, the main problem associated with the



91

Input-Delay Spread Function g(t, ξ) formulation, when it is used as an estimation

tool, is the omission of the Doppler effect. In this case, we use a Surrogate Function

instead of g(t, ξ). This surrogate function is the Delay-Doppler Spread Function

U(ξ, ν), which considers both, delay and Doppler spreading. Continuous Delay-

Doppler Spread Function U(ξ, ν) was defined in Equation (5.14) as follows:

U(ξ, ν) =

∫

t∈R

g(t, ξ)e−j2πνtdt. (6.21)

Under operators theory perspective, we can express Equation (6.21) as follows:

U(ξ, ν) = Ft{g(t, ξ)}, (6.22)

where Ft is the Fourier operator with respect to variable t. Applying the inverse

relation we obtain the follow expression:

g(t, ξ) = F−1
ν {U(ξ, ν)}, (6.23)

where F−1
ν is the inverse Fourier operator with respect to variable ν. Fourier operator

admits matrix representation; therefore, we can express, using a full matrix-vector

representation, Equation (6.23) as follows:

g =

(

ID ⊗
1

L
F∗

L

)

× EDL,1{U}, , (6.24)

where g is the Input-Delay Spread Function expressed in vector representation, ID

is the identity matrix of order D, ⊗ is the Kronecker product operator, FL is the

Fourier matrix of order L, D and L are the number of time-delays and Doppler-shifts

respectively, the structure 1
L
F∗

L represents the inverse Fourier matrix of order L, and

Er,c is the matrix reshape operator with row parameter r and column parameter c.

In this formulation, the order of g vector is D × L, and it can be substituted

in the equation (6.20) to obtain a new ALS SISO channel input-output relation,

using the Delay-Doppler Spread Function U(ξ, ν) instead of the Input-Delay Spread
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Function g(t, ξ) as channel characterization function. This new relation is shown as

follows:

w =

[(
∨

i ZV

⊔

j∈ZL

(φi,jYi,D{z})

)

×

(

ID ⊗
1

L
F∗

L

)]

× EDL,1{U}+ n, (6.25)

where V is the length of the sample windows, z ∈ l2(ZV ) is the transmitted signal,
(
∨

i ZV

⊔

j∈ZL

(φi,jYi,D{z})

)

is a matrix with size V ×DL associated with the new char-

acterization function U(ξ, ν) used, and Y is the Windows-Delay-Reverse operator.

Now we define:

X =

(
∨

i ZV

⊔

j∈ZL

(φi,jYi,D{z})

)

×

(

ID ⊗
1

L
F∗

L

)

, (6.26)

and

h = EDL,1{U}. (6.27)

Obtaining a more simple ALS SISO channel input-output relation as follows:

w = Xh+ n, (6.28)

where the matrix X ∈ l2(ZV × ZDL) and the vector h ∈ l2(ZDL).

The ALS SISO channel estimation problem now can be expressed as the problem

of estimating h matrix, given the input matrix X, and the output vector w. Both,

X and w are known because these matrices are associated with the input and output

signals respectively, and these are known during a training stage. This formulation

allows the estimation of both, delay and Doppler parameters at the same time.

6.3.3 Delay-Doppler SISO Estimation Strategy using Matching Pursuit
Algorithms

A direct computation approach to the channel estimation problem performs an

inverse or pseudo-inverse matrix operation on X, and then, multiply the result by
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w, as follows:

h = X†w. (6.29)

Therefore, the computational complexity, in delay-Doppler SISO case, to esti-

mate h, using a direct computation is bounded by O((DL)3+2(DL)2V ) (complexity

of matrix pseudo-inverse operation is dominant). However, many complications can

occur, such as, quasi-singular matrices, non-square matrices, among other complica-

tions. Another problem associated with direct computation approach is its expensive

computational complexity. In this case, it is possible to address the problem using

others approaches. A very useful approach is matching pursuit greedy algorithm,

developed by Mallat and Zhang, and used in signal processing problems with time-

frequency dictionaries [42].

The main reason for choosing the matching pursuit approach is the assumption

of sparsity on h vector. The time-frequency resolution used to estimate the Delay-

Doppler Spread Function U(ξ, ν) must be enough to detect most significant Delay-

Doppler contributions, but usually generates too many zero-valued positions on the

h vector. Intuitively, it is possible to imagine that only some delay-Doppler positions

must have significant values.

The matching pursuit greedy algorithm evaluates, using inner products, the

columns c in the input matrix X for determining which of these, ci, i ∈ ZDL, have

significant contribution on w vector. For each chosen column ci one coefficient λi

is calculated, and w is updated by subtracting of the contribution λici. So, in each

iteration w← w−λici is performed. The algorithm stops when the norm of residual

vector h is less than a threshold value or when the rate of change on residual vector

g is too insignificant. This threshold value is associated with a desired accuracy

level. The approximate algorithms offer solutions sufficiently accurate, but reducing

the computational cost. This trade-off is applied in the channel estimation problem,

and can be considered a contribution in this thesis work.
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6.3.4 Matching Pursuit Complexity

The complexity of matching pursuit algorithm is related directly with the num-

ber of significant coefficients (or non-zero coefficients) found in the delay-Doppler

spread function, and the order of the matrix X. On sparse conditions, the number

of significant coefficients may be close to 20 percent of the elements content in the

vector h. This assumption (sparsity condition) simplifies the channel problem esti-

mation. The goal is getting delay-Doppler parameters on the Delay-Doppler Spread

Function U(ξ, ν).

In Basic Matching Pursuit and Order-Recursive Least Square Matching Pursuit

algorithms, the computational work is measured in two stages:

1. computation of inner products (to measure the norm of each column) between each

column of input matrix cj and the output vector w, and

2. number of iterations to identify the dominant channel components and coefficients’

estimation.

Each inner product costs KD2L2, but its cost can be reduced to O(D2L2)

when the streaming symbol transmission starts, and then, the inner products can

be updated recursively.

In the second stage is more difficult to estimate the computational complex-

ity. On basic Matching Pursuit, if the algorithm converges in I iterations, then,

the complexity is bounded by O(DLI − I2), and in Order-Recursive Least Square

Matching Pursuit case, the computational complexity is bounded by O(DLI2) [43].

Total complexity, including both stages, on Basic Matching Pursuit is bounded

by O(DLI2), and on Order-Recursive Least Square Matching Pursuit is bounded

O(D2L2+DLI2). Where D is the number of tap delays, L is the number of Doppler

shifts, and K is the number of samples in the windows. Table 6–1 summaries the

complexities associated with matching pursuit algorithms under MIMO assumption.
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MP Variant Type Complexity Loop
Invariant

Basic MP Greedy O(MNDLI2) Maximum
Contribution

Orthogonal Greedy O((MNDL)2 Maximum
MP +MNDLI2) Contribution
Order Recur- Greedy O((MNDL)2 Minimum
sive LS-MP +MNDLI2) Residual Norm

Direct Pseudo O((KMNDL)3) N/A
Computation Inverse

Table 6–1: Complexity of Matching Pursuit (MP) Algorithm Variants. K = Windows Length,
D = Number of Delays, L = the Doppler Shifts, M = Number of Transmitters, N = Number of
Receivers,and I = Algorithm Iterations.

Table 6–2: Sequence of selected columns ci on MP variants. Matrix X has 150
columns.

Iter ORLSMP Residual OMP Residual BMP Residual
Norm Norm Norm

1 40 88.199 40 88.199 40 88.199
2 18 79.717 18 79.717 18 79.730
3 9 69.868 9 69.868 9 69.900
4 66 60.556 66 60.556 66 60.588
5 90 50.711 90 50.711 90 50.765
6 111 41.259 111 41.259 111 41.322
7 126 35.948 126 35.948 126 36.053
8 52 31.034 52 31.034 52 31.211
9 99 25.340 99 25.340 99 25.658
10 63 22.672 12 22.676 107 24.292
11 12 19.729 63 19.729 63 23.074
12 37 16.983 37 16.983 37 21.799
13 107 14.127 107 14.127 20 20.707
14 20 11.652 20 11.652 12 19.613
15 84 9.166 84 9.166 84 19.124
16 39 5.942 39 5.942 5 18.921
17 16 3.766 16 3.766 68 18.755
18 17 2.899 17 2.899 125 18.643
19 42 1.722 42 1.722 39 18.548
20 88 0.000 88 0.000 0 0.000
21 87 0.000 27 0.000 0 0.000
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Three variants of matching pursuit algorithm were implemented in this thesis

work, basic, orthogonal, and order-recursive least-square matching pursuit. Basic

matching pursuit (BMP), is the most simple implementation on this algorithm.

BMP chooses the maximum projection (inner product) of columns set of X on the

output vector w, and extract the correspondent contribution of each maximum on w.

Orthogonal matching pursuit, adds a new stage, after each iteration it recalculates

all the λi coefficients associate with each chosen ci column to force the orthogonal

condition on w residual vector on the subspace spanned by ci selected columns [44],

in order to choice of the columns, it is similar to the former algorithm variant. In the

third variant (order-recursive least-square MP) the method of choice the columns is

updated. Now each column is chosen such that it minimizes the residual value of

w vector. Therefore, each column is chosen considering the previous set of chosen

columns for minimizing the w residual vector, in order to calculate the λi coefficients

so that it is similar to the former variant [45].

6.3.5 Delay-Doppler SISO Channel Estimation Results

In this thesis, there were three Matlab matching pursuit implementations de-

veloped and an estimation experiment was designed in which were assigned the

following values to the channel model parameters number of time delays (D = 15),

number of Doppler shifts (L = 10), sampling time TS = 1/FS = 1/(20KHz), win-

dow length V = 512, equidistant delay shift ∆ξ = TS, equidistant Doppler shift

∆ν = (60Hz) ∗ 2 ∗ π/L. Assuming a sparse condition for Delay-Doppler Spread

Function U(ξ, ν) we obtained the results showed in the Table 6–3.

The Table 6–2 shows the sequence of chosen columns in each MP algorithm vari-

ant. We can see that the order recursive least square matching pursuit (ORLSMP)

algorithm always chooses the column that minimizes the residual norm. This fact is

easy to see in 10th iteration. ORLSMP choose the column c63 but orthogonal match-

ing pursuit (OMP) chose the column c12. However, the former reduced the residual
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Table 6–3: Estimation of Delay-Doppler Spread Function using Matching Pursuit

Data Given Estimated Delay-Doppler Spread Functions
Pos Original ORLSMP OMP BMP
U U U U U

: : : : :
5 - - - -0.2029
: : : : :
9 1.7469 1.7469 1.7469 2.8265
: : : : :
12 1.3488 1.3488 1.3488 0.4907
: : : : :
16 0.4847 0.4847 0.4847 -
17 0.3369 0.3369 0.3369 -
18 1.7222 1.7222 1.7222 2.7486
: : : : :
20 0.6533 0.6533 0.6533 0.4663
: : : : :
37 0.6503 0.6503 0.6503 0.5542
: : : : :
39 0.8003 0.8003 0.8003 0.1377
40 1.5270 1.5270 1.5270 2.7703
: : : : :
42 0.3281 0.3281 0.3281 -
: : : : :
52 1.3766 1.3766 1.3766 1.3235
: : : : :
63 1.2866 1.2866 1.2866 0.5500
: : : : :
66 1.6427 1.6427 1.6427 2.5547
: : : : :
68 - - - -0.1739
: : : : :
84 0.7571 0.7571 0.7571 0.3184
: : : : :
87 - 0.0000 - -
88 0.2238 0.2238 0.2238 -
: : : : :
90 1.7190 1.7190 1.7190 2.4535
: : : : :
99 1.4264 1.4264 1.4264 1.3103
: : : : :

107 1.1500 1.1500 1.1500 0.5982
: : : : :

111 1.4823 1.4823 1.4823 2.1579
: : : : :

125 - - - 0.0801
126 1.5073 1.5073 1.5073 1.4781
: : : : :
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norm to 22.672 and the latter reduced the residual norm to 22.676 (4 thousandths

plus), despite that the contribution of column c12 was greater than the contribution

of column c63. Basic matching pursuit algorithm was not developed to minimize

the residual norm, so it only verifies maximum contribution in each iteration when

choosing new columns.

Figure 6–6 shows the Delay-Doppler Spread Function estimated using matching

pursuit greedy algorithm variants.
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Figure 6–6: Delay-Doppler Spread Function estimated using Matching Pursuit Algo-

rithms: (a) U Given (b) U Est. via ORLSMP (c) U Est. via OMP (d) U Est. via

BMP

6.3.6 Delay-Doppler MIMO Approach

This approach of channel parameter estimation is done under the Multiple-Input

Multiple-Output (MIMO) assumption; then, consider M transmitter transducers

and N receiver transducers. In the MIMO scenario it is possible that a determined
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number of scatterers L are present between the transmit and receive transducers.

As in the SISO case, these scatterers will be considered point targets scatterers.

We assume that scatterers can be in motion. These movements introduce the

Doppler effect and it is expressed as frequency shifts acting over each copy of the

transmitted signals zm(t), associated with each scatterer L. If the ratio between

the bandwidth of the transmitted signals zm(t) and the velocity of propagation of

the signal in the medium c is very small, this effect is negligible. However, the

velocity of sound in the water (approx. 1,500 meters/sec), the Doppler effect is

really significant.

Under the MIMO assumption, we can express the received signals wn(t) as the

sum of L copies of signals zm(t) delayed by ξl, shifted by their respective Doppler

frequencies νl and scaled by their attenuation factors αl. Therefore,

wn(t) =
∑

m∈ZM

∑

l∈ZL

αl,m,nzm(t− ξl,m,n)e
+j2πνl,m,nt + n(t),

t ∈ R, w, z ∈ l2(R), (6.30)

where αl,m,n ∈ C are the attenuation factors for the input signal m received in the

transducer n, ξl,m,n, νl,m,n ∈ R are the time delays and Doppler delays associate with

each scatterer l, transmitter m, and receiver n (ξ0,m,n and ν0,m,n can be considered

zeros, assuming line of sight between the transmitter and the receiver) and n(t)

is real valued independent wide sense stationary Gaussian stochastic process that

represent the noise.

This approach captures the more important aspects of a physical realization of

the underwater ALS MIMO channels.
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Figure 6–7: ALS Channel under the MIMO assumption

Under the MIMO assumption, we can obtain the impulse response of the un-

derwater ALS channel substituting each input signal zm(t) by the impulse function

δ(t) in the Equation (6.30). Therefore, we obtain

hn,m(t, ξ) =
∑

m∈ZM

L∑

l=0

αlδn,m(t− ξl,m,n)e
+j2πνl,m,nt,

ν, t, ξ ∈ R, l ∈ ZL, hn,m ∈ l2(R), (6.31)

where hn,m(t, ξ) (kernel function) is the time-variant impulse response between the

transmitter m and the receiver n.

It is the most complex case for the underwater ALS model. In the next section,

we will address the problem of the matrix formulation for MIMO ALS channel input-

output relationship establishing the mathematical foundations for the estimation

process.

6.3.7 Estimating a Delay-Doppler MIMO ALS channel

The more general continuous formulation gives us a MIMO ALS channel input-

output relationship as follows:

wn(t) =
∑

m∈ZM

∫

ξ∈R

zm(t− ξ)g(t, ξ)dξ + n(t), (6.32)

where zm(t) is the input signal sent by the transmitter m, wn(t) is the output signal

captured by the receiver n and gn,m(t, ξ) is the Input-Delay Spread Function (used
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in this thesis work as the impulse response of Delay-Doppler MIMO ALS channel)

between the transmitter n and the receiver n, and n(t) is the noise signal.

Starting with this formulation, the next step is establishing the sampling rela-

tion to convert the continuous model in a discrete model, that is, a basic condition

to build a computational model. In this case, we will call TS the sampling time,

then we choose d for the time discrete variable, where the new formulation will be

wn(vTS) =
∑

m∈ZM

∑

d∈ZD

zm(vTS − ξd)gn,m(vTS, ξd) + n(vTS), (6.33)

where wn(t) is the signal captured by the receiver n, zm(t) is the signal sent by the

transmitter m, v ∈ ZV , V is the length of the signal windows, D is the number

of delays considered in the ALS channel, and ξd are the equidistant time delay.

We assume that statistically the ALS channel is a WSSUS (wide-sense stationary

uncorrelated scattering) channel, and the ξV−1 is very close to the channel delay

spread TDelay. For estimation purposes V must be sufficiently large for offering a

good resolution for delays detection.

Doing a continuous to discrete conversion, we have rewritten the Equation (6.33)

as:

wn[v] =
∑

m∈ZM

∑

d∈ZD

zm[v − ξd]gn,m[v, ξd] + n[v], (6.34)

where D is the number of time delays.

The time distant between 2 consecutive delays will be referenced as ∆ξ and

for simplicity reasons in this thesis work we are considering that ∆ξ = TS. This

condition allows to establish that each ξd shift is equivalent to each zm[v] shift.

In any case ∆ξ could be greater or equal than TS and preferably ∆ξ must be an

integer multiple of TS. The principal purpose to establish these restrictions is reach

more mathematical simplicity and reduce the complexity of scaling processes. Other

important assumption is related to time spread TDelay, which must be then less or

equal to coherence time TC .
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In this point, it must be remembered that the Input-Delay Spread Function

gn,m(t, ξ), n ∈ ZN , m ∈ ZM , stays constant during the coherence time TC and so it

stays constant during the time spread TDelay, therefore, gn,m[v, ξd] could be consid-

ered as gn,m[v] (independent of the delay) in the Equation (6.34).

Under the operators theory perspective, the operation zm[v − ξd] in (6.17) can

be rewritten as zm[v− ξd]→ Sξd{zm[v]}, where S is the shift operator and ξd is used

as displacement parameter, therefore the Equation (6.34) can be rewritten as:

wn[v] =
∑

m∈ZM

∑

d∈ZD

Sξd{zm[v]}gn,m[v, ξd] + n[v]. (6.35)

Each linear operator leads to a matrix representation, Sξd{zm[v]} can be for-

mulated in matrix-vector representation as (Sξdzm)[v], where Sξd is the matrix rep-

resentation of the shift operator Sξd . Substituting (Sξdzm)[v] by the vector cξd,m[v],

and remembering that Input-Delay Spread Function gn,m[v, ξd] stays constant during

time spread TDelay we can rewrite the Equation (6.35) as:

wn[v] =
∑

m∈ZM

∑

d∈ZD

cξd,m[v]gn,m[d] + n[v]. (6.36)

Applying a full matrix-vector representation we will obtain

wn = Cmgn,m + n, (6.37)

where wn, and n are the vectors of order V , gn,m is a vector of order D representing

gn,m[d], and Cm is the V ×D matrix representation of cξd,m[v].

The ALS channels are doubly dispersive channels, then, these channels suffer

of delay-Doppler spreading, therefore the main deficiency associates with the Input-

Delay Spread Function gn,m(t, ξ), when it is used as estimation tool, it is the resulting

omission of the Doppler effect. In this situation is appropriates to use a surrogate

function of the gn,m(t, ξ), that is the Delay-Doppler Spread Function Un,m(ξ, ν), n ∈

ZN , m ∈ ZM , which considers both, delay and Doppler spreads. The continuous
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Delay-Doppler Spread Function Un,m(ξ, ν) was defined in the Equation (5.14) as:

Un,m(ξ, ν) =

∫

t∈R

gn,m(t, ξ)e
−j2πνtdt, n ∈ ZN , m ∈ ZM . (6.38)

Again, under the operators theory perspective, we can express the Equation

(6.38) as:

Un,m(ξ, ν) = Ft{gn,m(t, ξ)}, n ∈ ZN , m ∈ ZM , (6.39)

where Ft is the Fourier operator with respect to t variable, and applying the inverse

relation we can obtain

gn,m(t, ξ) = F
−1
ν {Un,m(ξ, ν)}, n ∈ ZN , m ∈ ZM , (6.40)

where F−1
ν is the inverse Fourier operator with respect to ν variable. Fourier operator

admits matrix representation, therefore we can express, in discrete manner and using

the full matrix-vector representation, the Equation (6.40) as:

gn,m =

(

ID ⊗
1

L
F∗

L

)

× EDL,1{Un,m}, n ∈ ZN , m ∈ ZM , (6.41)

where gn,m is the Input-Delay Spread Function between the transmitter m and the

receiver n expressed in vectorial manner, ID is the identity matrix of order D, ⊗ is

the Kronecker product operator, FL is the Fourier matrix of size L, D and L are

the number of delay and Doppler shifts respectively, the structure 1
L
F∗

L represents

the inverse Fourier matrix of size L, and Er,c is the matrix reshape operator with

row parameter r and column parameter c.

In this formulation, the order of gn,m vector is DL and it can be substituted in

the Equation (6.37) for obtaining a new ALS MIMO channel input-output relation-

ship using the Delay-Doppler Spread Function Un,m(ξ, ν) instead of the Input-Delay

Spread Function gn,m(t, ξ) as channel characterization function. This new relation
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is as follows

wn =

[(
∨

i ZV

⊔

j∈ZL

(φi,jYi,D{zm})

)

×

(

ID ⊗
1

L
F∗

L

)]

× EDL,1{Un,m}+ n, (6.42)

where zm ∈ l2(ZV ) is the input signal sent by the transmitter m, wn is the output

signal captured by receiver n,

(
∨

i ZV

⊔

j∈ZL

(φi,jYi,D{zm})

)

is a matrix with size V×DL

due to the new function of channel characterization Un,m(ξ, ν) used. Now we define

Xm =

(
∨

i ZV

⊔

j∈ZL

(φi,jYi,D{zm})

)

×

(

ID ⊗
1

L
F∗

L

)

, n ∈ ZN , m ∈ ZM , (6.43)

and

hn,m = EDL,1{Un,m}, n ∈ ZN , m ∈ ZM , (6.44)

obtaining an ALS MIMO channel input-output relationship as follows:

wn = Xmhn,m + n, n ∈ ZN , m ∈ ZM , (6.45)

where each matrix Xm ∈ l2(ZV × ZDL), and each vector hn,m ∈ l2(ZDL).

The ALS MIMO channel estimation problem now can be expressed as the es-

timate problem of estimating hn,m matrices given the input matrices Xm and the

output vectors wn. Both, Xm and wn can be known because these are associated

with input and output signals respectively, and these can be used during a training

stage. The relevance of this formulation is that the channel vector hn,m allows to

estimate both, delay and Doppler parameters at the same time.
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6.3.8 Delay-Doppler MIMO Estimation Strategy

We start this section remembering the Equation (6.11) which establishes the

input-output relation in a MIMO case:
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(6.46)

Now we consider a new formulation for the delay-Doppler MIMO case starting

with the general MIMO case formulation. In the delay-Doppler MIMO scenario the

matrix C{zm}, m ∈ ZM used in the general MIMO case is equivalent to the matrix

Xm, m ∈ ZM used in the delay-Doppler MIMO formulation showed in the Equation

(6.45). Therefore, the Equation (6.11) can be rewritten in the delay-Doppler MIMO
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context as follows:
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(6.47)

where M is the number of transmitters, N is the number of receivers, V is the

length of the signal window, D, and L is the number of time delays and the number

of Doppler shifts considered in each impulse response, Xi ∈ l2(ZV ×ZDL), i ∈ ZM . In

compact matrix-vector representation we can express the Equation (6.47) as follows:

WMIMO = XMIMOUMIMO, (6.48)

where WMIMO ∈ l2(ZNV ), XMIMO ∈ l2(ZNV ×ZMNDL), and UMIMO ∈ l2(ZMNDL).

Using a direct computation approach on the delay-Doppler MIMO estimation prob-

lem could be reduced to find an inverse or pseudo-inverse matrix for XMIMO and
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then multiply it by WMIMO, as follows:

UMIMO = X†
MIMOWMIMO (6.49)

Therefore, the computational complexity in the delay-Doppler MIMO channel to

estimate UMIMO using a direct computation is O ((MNDL)3 + 2 (N3(MDL)2V )).

However, many complications can appear, such as quasi-singular matrices, non-

square matrices, and others. Another problem associated with the direct approach

is its expensive computational complexity. In this sense, it is possible to address the

problem using others approaches. In this thesis, we used matching pursuit greedy

algorithm again for resolving the delay-Doppler MIMO estimation problem.

In a typical case of delay-Doppler MIMO parameter estimation with values

{16,16,16536,128,128} assigned to the complex variables {M,N, V,D, L}, we obtain

1.7 × 1020 floating-point operations, approximately. These results must be carried

out in a fraction of the coherence time TC . This consideration forces us to find other

approaches. In this work, the application of the matching pursuit greedy algorithm

was revised.

The principal reason for choosing the matching pursuit approach is the assump-

tion of sparsity of UMIMO vector. The time-frequency resolution used for estimating

the Delay-Doppler Spread Function U(ξ, ν) is enough to detect the more significant

delay-Doppler contributions but usually generates too many zero-value positions on

the UMIMO vector. In a typical delay-Doppler channel, only 20% of the values in

the matrix UMIMO are non-zero or significant values.

The computational complexity in matching pursuit algorithm is not clearly

defined. However, we can assume a significant reduction of the computational com-

plexity reached by the sparsity condition of the vector UMIMO. We used simulations

to measure the improvement offers by the matching pursuit Greedy algorithm. The

next section shows the results.
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6.3.9 Delay-Doppler MIMO Channel Estimation Results

Three variants of matching pursuit algorithm were developed to estimate the

delay-Doppler Spread function U in a 2 × 2 MIMO case. These variants are: Basic

Matching Pursuit (BMP), Orthogonal Matching Pursuit (OMP), and Order Recur-

sive Least Square Matching Pursuit (ORLSMP). These algorithms were codified

using Matlab. An estimation experiment was designed assigning the following val-

ues to the parameters: number of time delays (D = 15), number of Doppler shifts

(L = 10), sampling time TS = 1/FS = 1/(20KHz), window length V = 512, equidis-

tant delay shift ∆ξ = TS, equidistant Doppler shift ∆ν = (60Hz) ∗ 2 ∗ π/L, number

of transmit transducers M = 2, number of receive transducers N = 2. Assuming a

sparse condition for Delay-Doppler Spread Function U(ξ, ν) we obtained the results

showed in the Tables 6–4, 6–5, 6–6, 6–7.

In this experiment, a random MIMO matrix XMIMO ∈ l2(Z1024 × Z600) was

built with the structure described in the Equations (6.47) and (6.48), and a random

sparse matrix UMIMO ∈ Z600. Using the Equation (6.48) the channel action was

simulated on the input matrix XMIMO and it was carried out on the output matrix

WMIMO ∈ l2(Z1024). The matrices XMIMO and WMIMO were passed as parameters

to matching pursuit algorithms. The purposes of this experiment were: first, to esti-

mate the matrix UMIMO using matching pursuit algorithm and, second, to measure,

in approximated manner, the computational complexity in a sparse MIMO channel

condition.

The Tables 6–8 and 6–9 show the sequence of chosen columns in each Matching

Pursuit algorithm variant. We can see that order recursive least square matching

pursuit (ORLSMP) algorithm always chooses the column that minimizes the residual

norm. This fact is easy to watch in 14th iteration, ORLSMP chose the column

c121 but orthogonal matching pursuit (OMP) chose the column c144. However, the

ORLSMP reduced the residual norm to 93.59 while the OMP only reduced the
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Table 6–4: 2 × 2 MIMO Case. Estimation of delay-Doppler Spread Function using
Matching Pursuit Greedy Algorithms. U0,0 function. Positions 0-149 in UMIMO.

Data Given Estimated Delay-Doppler Spread Functions
Pos Original ORLSMP OMP BMP
U0,0 U0,0 U0,0 U0,0 U0,0

: : : : :
5 2.3361 2.3361 3.3720 1.2492
6 2.1917 2.1917 0 0
: : : : :
8 0 0 1.9760 4.7029
: : : : :
14 1.4348 1.4348 0 0
: : : : :
26 1.8971 1.8971 3.1259 0
27 2.5533 2.5533 3.5069 9.5730
28 1.9765 1.9765 0 0
: : : : :
38 2.4847 2.4847 3.2132 7.5689
39 1.2168 1.2168 0 0
: : : : :
43 2.1559 2.1559 2.6409 0
44 2.8537 2.8537 2.7511 1.2731
: : : : :
52 1.4224 1.4224 0 0
: : : : :
68 1.4994 1.4994 0 0
: : : : :
92 1.3051 1.3051 0 0
: : : : :
96 1.0039 1.0039 0 0
: : : : :

115 2.7458 2.7458 2.9249 5.5397
: : : : :

121 2.5105 2.5105 3.5352 0
: : : : :

124 2.1486 2.1486 0 0
: : : : :

127 1.9171 1.9171 3.2537 11.8255
: : : : :

130 1.0670 1.0670 0 0
: : : : :

132 2.3152 2.3152 3.1350 0
133 1.6625 1.6625 0 0
134 2.9348 2.9348 4.1011 2.7532
: : : : :

141 1.0159 1.0159 0 0
: : : : :

143 1.4778 1.4778 0 0
144 2.2653 2.2653 3.9799 3.7647
: : : : :
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Table 6–5: 2 × 2 MIMO Case. Estimation of delay-Doppler Spread Function using
Matching Pursuit Greedy Algorithms. U1,0 function. Positions 150-299 in UMIMO.

Data Given Estimated Delay-Doppler Spread Functions
Pos Original ORLSMP OMP BMP
U1,0 U1,0 U1,0 U1,0 U1,0

: : : : :
153 1.6757 1.6757 0 0
: : : : :

170 1.5413 1.5413 0 0
: : : : :

183 1.6938 1.6938 0 0
: : : : :

187 1.3729 1.3729 2.1431 3.2565
188 1.1974 1.1974 1.9197 0
: : : : :

200 2.2461 2.2461 0 0
201 2.8673 2.8673 3.5858 1.3568
: : : : :

204 0 0 1.3157 7.4830
: : : : :

209 2.5833 2.5833 3.6436 0
: : : : :

228 1.0010 1.0010 0 0
: : : : :

238 2.7077 2.7077 3.8064 1.2645
: : : : :

243 2.0051 2.0051 2.5568 0
: : : : :

248 1.9284 1.9284 2.8804 4.3527
249 1.8269 1.8269 0 0
: : : : :

259 1.6835 1.6835 0 0.7795
: : : : :

262 1.0663 1.0663 0 0
: : : : :

265 1.4256 1.4256 3.4081 2.9871
: : : : :

286 2.5754 2.5754 3.0392 2.6570
: : : : :

291 2.6207 2.6207 3.1085 0
: : : : :

293 1.7061 1.7061 2.2886 11.9775
: : : : :

298 2.6647 2.6647 3.1884 0
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Table 6–6: 2 × 2 MIMO Case. Estimation of delay-Doppler Spread Function using
Matching Pursuit Greedy Algorithms. U0,1 function. Positions 300-449 in UMIMO.

Data Given Estimated Delay-Doppler Spread Functions
Pos Original ORLSMP OMP BMP
U0,1 U0,1 U0,1 U0,1 U0,1

: : : : :
318 1.9796 1.9796 0 0
: : : : :

322 2.9443 2.9443 4.4812 2.0434
: : : : :

353 2.7039 2.7039 3.5407 3.1537
: : : : :

375 2.6329 2.6329 3.7946 3.8296
376 1.4181 1.4181 0 0
: : : : :

385 2.9188 2.9188 4.0628 3.2094
: : : : :

392 1.9998 1.9998 2.9108 0.8845
: : : : :

401 2.9914 2.9914 4.0493 6.3969
: : : : :

413 2.7263 2.7263 2.6200 0
: : : : :

residual norm to 95.595, despite the contribution of column c144 was greater than

the contribution of column c121. Applying an analysis to tables presented in this

section, it easily highlights the fact that the Order Recursive Least Square Matching

Pursuit (ORLSMP) is thematching pursuit variant that offers the best results on the

MIMO case. In the SISO case, reviewed above, the advantages offered by OLSRMP

over OMP were minimum. However, on the MIMO case, OLSRMP is radically

better than OMP. In the MIMO case the Basic Matching Pursuit (BMP) algorithm

variant is highly erratic. Therefore, this variant is not useful in the MIMO scenarios.

Figures 6–8, 6–9, 6–10, 6–11 show the 2×2 MIMO Delay-Doppler Spread Func-

tions estimated using three matching pursuit greedy algorithm variants. All these

functions were computed using an unique matrix-vector formulation. The integrated

approach carried out a solution contents in only one big vectorUMIMO but separated

using indexes discrimination. In these figures, we can appreciate that OLSRMP is

the matching pursuit algorithm more appropriate to MIMO channel scenarios.
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Table 6–7: 2 × 2 MIMO Case. Estimation of delay-Doppler Spread Function using
Matching Pursuit Greedy Algorithms. U1,1 function. Positions 450-599 in UMIMO.

Data Given Estimated Delay-Doppler Spread Functions
Pos Original ORLSMP OMP BMP
U1,1 U1,1 U1,1 U1,1 U1,1

: : : : :
452 1.5825 1.5825 2.6072 8.5423
: : : : :

455 2.8261 2.8261 3.7564 1.7326 +
: : : : :

459 1.9381 1.9381 0 0
: : : : :

463 2.5409 2.5409 3.6116 0
: : : : :

466 2.7413 2.7413 3.0498 0.9142
: : : : :

478 2.4262 2.4262 3.2608 5.1936
: : : : :

482 0 0 0 0.7697
: : : : :

507 1.2393 1.2393 0 0
: : : : :

527 2.0883 2.0883 0 0
: : : : :

536 2.3547 2.3547 3.4629 6.3446
: : : : :

579 2.7487 2.7487 2.8741 2.4921
: : : : :

592 2.7664 2.7664 0 0
: : : : :

599 2.3643 2.3643 2.8363 0
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Table 6–8: Sequence of chosen columns ci in Matching Pursuit algorithm variants.
Using a XMIMO matrix of 600 columns. Part 1. Iterations 1-40.

Iter ORLSMP Residual OMP Residual BMP Residual
Norm Norm Norm

1 293 188.073 293 188.073 293 188.073
2 127 171.984 127 171.984 127 171.984
3 27 160.644 27 160.644 27 160.650
4 452 150.680 452 150.680 452 150.694
5 38 142.568 38 142.568 38 142.603
6 204 134.174 204 134.174 204 134.240
7 401 127.358 401 127.358 401 127.430
8 536 120.505 536 120.505 536 120.610
9 115 115.134 115 115.134 115 115.255
10 478 110.064 478 110.064 478 110.229
11 8 105.657 8 105.657 8 105.920
12 248 101.797 248 101.797 248 102.134
13 298 97.593 375 98.749 375 99.046
14 121 93.590 144 95.595 144 96.020
15 68 90.335 385 93.096 385 93.651
16 144 86.967 187 90.625 187 91.260
17 455 84.193 353 88.159 353 88.913
18 187 81.190 298 83.171 265 86.789
19 322 78.220 134 78.129 134 84.978
20 385 75.313 265 75.511 286 83.223
21 353 72.358 579 73.462 579 81.629
22 265 69.524 322 69.941 322 80.509
23 209 66.646 455 66.335 455 79.695
24 134 64.003 209 63.484 201 79.205
25 291 61.378 286 60.936 44 78.746
26 44 59.006 44 58.718 5 78.320
27 579 56.765 121 56.305 238 77.901
28 238 54.913 238 54.337 466 77.667
29 5 53.099 5 52.658 392 77.449
30 286 51.513 392 50.991 259 77.246
31 466 49.889 466 49.380 482 77.083
32 463 48.175 201 47.712 0 0.000
33 201 46.292 463 45.919 0 0.000
34 392 44.620 291 44.013 0 0.000
35 243 43.186 243 42.559 0 0.000
36 26 41.791 413 41.139 0 0.000
37 132 40.315 26 39.450 0 0.000
38 375 38.797 132 37.802 0 0.000
39 413 37.197 43 36.414 0 0.000
40 600 35.779 600 34.965 0 0.000
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Table 6–9: Sequence of chosen columns ci in Matching Pursuit algorithm variants.
Using a XMIMO matrix of 600 columns. Part 2. Iterations 41-69.

Iter ORLSMP Residual OMP Residual BMP Residual
Norm Norm Norm

41 43 34.347 188 33.982 0 0.000
42 200 33.191 0 0.000 0 0.000
43 6 32.097 0 0.000 0 0.000
44 28 30.971 0 0.000 0 0.000
45 124 29.671 0 0.000 0 0.000
46 527 28.482 0 0.000 0 0.000
47 183 27.203 0 0.000 0 0.000
48 459 25.904 0 0.000 0 0.000
49 592 24.528 0 0.000 0 0.000
50 259 23.110 0 0.000 0 0.000
51 143 21.847 0 0.000 0 0.000
52 249 20.737 0 0.000 0 0.000
53 318 19.582 0 0.000 0 0.000
54 52 18.559 0 0.000 0 0.000
55 133 17.447 0 0.000 0 0.000
56 170 16.330 0 0.000 0 0.000
57 92 15.160 0 0.000 0 0.000
58 376 13.917 0 0.000 0 0.000
59 153 12.653 0 0.000 0 0.000
60 14 11.471 0 0.000 0 0.000
61 188 10.450 0 0.000 0 0.000
62 507 9.432 0 0.000 0 0.000
63 39 8.379 0 0.000 0 0.000
64 262 7.344 0 0.000 0 0.000
65 130 6.313 0 0.000 0 0.000
66 141 5.113 0 0.000 0 0.000
67 228 3.561 0 0.000 0 0.000
68 96 0.000 0 0.000 0 0.000
69 155 0.000 0 0.000 0 0.000
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Delay-Doppler Spread Function Given between transmitter 0 and receiver 0.

Delay-Doppler Spread Function Estimated using ORLSMP

Delay-Doppler Spread Function Estimated using OMP

Delay-Doppler Spread Function Estimated using BMP

Delay

Delay

Delay

Delay

Doppler

Doppler

Doppler

Doppler

Figure 6–8: 2 × 2 MIMO case. Delay-Doppler Spread Function U0,0 estimated using

Matching Pursuit Algorithms
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Delay-Doppler Spread Function Estimated using ORLSMP

Delay-Doppler Spread Function Estimated using OMP

Delay-Doppler Spread Function Estimated using BMP

Delay

Delay

Delay

Delay

Doppler

Doppler

Doppler

Doppler

Delay-Doppler Spread Function Given between transmitter 0 and receiver 1

Figure 6–9: 2 × 2 MIMO case. Delay-Doppler Spread Function U1,0 estimated using

Matching Pursuit Algorithms
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Delay-Doppler Spread Function Estimated using ORLSMP

Delay-Doppler Spread Function Estimated using OMP

Delay-Doppler Spread Function Estimated using BMP

Delay

Delay

Delay

Delay

Doppler

Doppler

Doppler

Doppler

Delay-Doppler Spread Function Given between transmitter 1 and receiver 0

Figure 6–10: 2× 2 MIMO case. Delay-Doppler Spread Function U0,1 estimated using

Matching Pursuit Algorithms
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Delay-Doppler Spread Function Estimated using ORLSMP

Delay-Doppler Spread Function Estimated using OMP

Delay-Doppler Spread Function Estimated using BMP

Delay

Delay

Delay

Delay

Doppler

Doppler

Doppler

Doppler

Delay-Doppler Spread Function Given between transmitter 1 and receiver 1

Figure 6–11: 2× 2 MIMO case. Delay-Doppler Spread Function U1,1 estimated using

Matching Pursuit Algorithms
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6.4 Parallel Modeling Tools

6.4.1 pMatlab

The computational complexity signal processing algorithms can be excessive,

even more so when they are manipulated signals with a high number of samples

(order 220). Knowing also that many applications, such as radar and sonar ap-

plications, require real-time responses, it is mandatory to develop high-performace

computational applications to improve the response times. Multicore architectures

are now available for application developers, giving the possibility to exploit the

power of parallel systems at a reasonable cost. Simultaneously, the industry of the

software has developed tools that allow it to make the application conversion serial-

to-parallel with low level of difficulty. One of these tools is pMatlab, a parallel

toolbox developed for Matlab, in Linconl Laboratory, of MIT. It allows to make

parallel implementations in a fast and efficient way.

Figure 6–12: How dmat datatype distribute a bi-dimensional array between 4 proces-
sors

pMatlab can be considered a framework of parallel programming based on

PGAS (Partitioned Global Address Space) [46]. This category exploits the creation

mechanisms of global arrays to be distributed in more than one processor. This

approach allows the programmer to use the distributed array like it was an unique

object, therefore, making very comfortable the migration from serial-to-parallel ap-

proach. In the case of the ambiguity function, there is a natural approach to the
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PGAS paradigm, making of pMatlab a very attractive option for its implementation.

Many efforts have been made to develop fast computation algorithms for ambiguity

function.

A special connection with Kronecker products algebra has been sought. How-

ever, there are some complications for algorithm parallel implementation. Among

them we can point out: keeping track of which processor data is located in, determin-

ing which processor is free for working, distributing data such that communication

between processors is minimized, distributing computation such that performance

per processor is maximized, synchronizing data between processors (if necessary),

debugging communication between processors.

pMatlab introduces a new datatype: the distributed matrix dmat is the funda-

mental data storage datatype in pMatlab, equivalent to double in matlab. pMatlab

supports dmat objects with two, three, or four dimensions. dmat objects must

be explicitly constructed in pMatlab via a constructor functions (overload methods

with additional map parameter). The map parameter accepts a map object which

describes how to distribute the dmat object across multiple processors. Figures 6–12

and 6–13 show how dmat datatype distribute arrays with two and tree dimensions.

Figure 6–12 is the outcome of performing the pMatlab code shows in Table 6–10,

and Figure 6–13 is the outcome of performing the pMatlab code shows in Table

6–11.

Table 6–10: Script to Create a 2-D Mapping

Line Instructions

1 Map = map([2 2],,[0:3])

2 D = ones(4, Map);
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Table 6–11: Script to Create a 3-D Mapping

Line Instructions

1 Map = map([2 2 2],,[0:7])

2 D = ones(4,4,4, Map);

Figure 6–13: How dmat datatype distribute a 3-dimensional array between 8 proces-
sors

6.5 MIMO Channel Estimation Parallel Approach

The increasing demand for computational power has forced developers to adapt

their software application development techniques to the new challenges of increasing

speed up demands. Multiple options have arrived to the software market. A big

central challenge to developers is represented by the necessary soft-transition from

serial to parallel paradigms. This gap has been reduced using tools that, developing

intelligent approaches to translate serial-to-parallel code without significant changes

in the program and data structures.

In the modeling and estimation fields Matlab has been a powerful tool and a

dominant standard. Clear and efficient code, high variety of multi-discipline tool-

boxes, and a growing number of graphical wizards have positioned Matlab in an

important place in sciences and engineering research. Lincoln Lab, in MIT, devel-

oped a parallel toolbox for Matlab called pMatlab [47]. High-productivity software
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has been developed using pMatlab as parallel platform [48], and many other high-

performance DSP applications are based on pMatlab [49]. In high performance com-

puting, Message Pass Interface (MPI) is a very important communication standard

for applications working on multi-processor platforms. pMatlab uses a particular

MPI distribution called MatlabMPI. Whole version of MatlabMPI was developed in

Matlab code.

The idea behind parallel programming is to break down a big problem into

smaller problems with a well defined connections map, for monitoring the infor-

mation flow in a very clear manner. A simple but efficient approach to address

this problem consists in dividing the input data in NP segments, where NP rep-

resents the available number of available processors, and then to distribute these

segments among processors. This approach is known as Single Program Multiple

Data (SMPD) paradigm. Each processor Pi runs the same copy of the program; ie,

each data segment receives the same treatment in the application level.

In the MIMO ALS estimation problem studied in the previous section, many

obstacles for developing a parallel approach are found. First, the process nature is

inherently sequential, each stage is strongly related to the previous stages. Second,

the amount of data to distribute among processors is significantly abundant. Match-

ing pursuit algorithm performs the follow steps in an iterative manner as shows Table

6–12.

Table 6–12: Matching Pursuit Algorithm

Line Pseudo-Instructions
1 Selects a dictionary column ci using a maximization or

minimization criteria related to a residual vector g
2 Computes a coefficient λi associated with ci and g
3 Updates g vector subtracting the λici contribution from

g (g← g− λici)
4 Verifies a stopping condition
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In Table 6–12 Steps 1 and 2 perform the more expensive computational effort

in the algorithm, so it would be important to apply a possible parallel approach

in these specific steps. The inherent sequential nature of step 2 makes it difficult

to apply using a parallel approach. However, it is viable to perform a dynamic

break down of the recalculating process of λi coefficients in the orthogonal matching

pursuit algorithm. The step 1 is performed through the Max Proj Matlab function

(Table 6–13). This function computes the ci column with maximum contribution

(projection) on a g residual vector.

Table 6–13: Max Proj Matlab Function

Line Instructions
1 function column = Max Proj(C,g,chosen columns)

2 columns = size(C,2);

3 j = setdiff([1:columns],chosen columns);

4 R = C(:,j);

5 proj = ((R´ * g).^2) ./ diag(R´ * R);

6 [Max,column] = max(proj);

7 end

In the Max Proj Matlab function, the R matrix must be distributed in order

to apply a parallel computational approach. This procedure will be applied using

pMatlab tools. First we need to declare the R matrix as distributed matrix datatype.

For this purpose, it is necessary to perform the pMatlab instruction map. Table 6–14

shows the pMatlab Distributed Map definition, distributed matrix object construc-

tion, and distributed matrix initialization, based on the sequential code presented in

Table 6–13.
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...

Figure 6–14: Single Program Multiple Data Paradigm Applied to Selection Column

Procedure in OMP and BMP Algorithms

Now Cmatrix data has been loaded in a distributed data structure R and it can

be separated and treated for processing in each individual available processor. This

approach is based on Single Program Multiple Data paradigm. Table 6–15 shows
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Table 6–14: pMatlab Distributed Map Definition

Line Instructions
1 [rows,columns]=size(C);

2 mapR = map[1 Ncpus],{},[0:Ncpus-1];
3 j = setdiff([1:columns],chosen columns);

4 R = zeros(rows,length(j),mapR);

5 R = C(:,j);

Table 6–15: Matlab/pMatlab Code for Distributed Column Selection

Line Instructions
1 mapP = map([Ncpus 1],{},[0:Ncpus-1]);

% mapping design → CV×P (D×L)

2 proj=zeros(rows,1,mapP);

% proj : CV×P (D×L)

3 p = local(proj)

% p← proj.loc
4 r = local(R);

% r ← R.loc (scattering)
5 p = ((r´ * g).^2) ./ diag(r´ * r);;

% local computation
6 proj = put local(p);

% proj.loc← p
7 proj = agg(proj);

% gathering
8 [Max,column] = max(proj);

% getting result

the sequence of Matlab/pMatlab instructions necessary to complete the column se-

lection process, in line 1 the mapping is designed, the mathematical nomenclature

for this map implementation is defined as proj : CV ×P (D×L), where the P operator

defines the blocks scattering map on the D×L columns, and C defines the complex

data type. The whole selection column procedure is illustrated in Figure 6–14. In

this illustration, the shared and distributed memory areas can be seen.

This parallel approach can be implemented in any development parallel tool.

However, pMatlab offers a simple way to code implementations without incurring
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too much code overhead compared to the original sequential code. The distributed

matrix data type is a powerful tool for fast parallel implementation of proofed sequen-

tial algorithms, like the Max Proj function for column selection in basic matching

pursuit and orthogonal matching pursuit algorithms. The timeline in serial and par-

allel approaches is shown in the Figure 6–15. This approach is not valid for order

recursive least square matching pursuit since it uses a different criteria for column

selection, based on minimization of g residual norm. When delay-Doppler resolution

grows, this parallel approach offers significant improvements in the algorithm speed

up process. High delay-Doppler resolution is useful for improving the parameter

detection. Therefore, it is necessary to address parallel approaches for ALS channel

parameter estimation.

Serial

Processing{

Figure 6–15: Timeline in Serial and Parallel Approaches. Case: 16 Columns and 4

Processors

In this approach, the delay-Doppler resolution depends on the D, and L pa-

rameters. The computational complexity of Max Proj column selection procedure
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is O(V ×D×L), this load can be divided among Ncpus available processors. This

procedure is core in basic matching pursuit and orthogonal matching pursuit algo-

rithms. They are very important tools in the ALS channel parameter estimation

process.

6.6 MIMO ALS Parallel Approach

In the MIMO ALS channel case, the data segmentation is natural because the

output signal w(t), represented by the signals collection [w0(t) w1(t) ... wR−1(t)],

where R is the number of receivers, can be distributed using a simple segmentation

criteria. Remembering that on the MIMO ALS channels the treatment received by

each wr(t) received signal is the same, ie. the procedure method is the same for each

received signal using a different data set (Single Program Multiple Data paradigm

again). This behavior fits in SPMD paradigm, conducting to a parallel model imple-

mentation. Figure 6–16 shows a MIMO ALS channel structure, it allows to visualize

the parallel nature of the channel.
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Figure 6–16: MIMO ALS Channel Structure

The MIMO ALS channel estimation problem is reduced to estimate efficiently

a SISO ALS channel and develop an accurate procedure for data segmentation,

breaking it down in their collection elements [w0(t) w1(t) ... wR−1(t)]. Finally, we

need to estimate each SISO ALS channel and gather the partial solutions to obtain

a global outcome.

6.6.1 Computational Formulation

Each continuous input signal zs(t) ∈ l2(R) can be sampled and represented as a

signal zs[v] ∈ l2(ZV ) and so be described as a discrete signal with the window’s length

M . Under this approach, we can express the MIMO ALS input-output relationship
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as follows:

wr[v] =

S−1∑

s=0

D−1∑

d=0

L−1∑

l=0

αd,r,szs[v − ξd,r,s]e
+j2πfl,r,sm, (6.50)

where d ∈ ZD is the number of delays, l ∈ ZL is the number of Dopplers, r ∈ ZR is

the number of receivers, s ∈ ZS is the number of transmitters (senders), m ∈ ZV is

the length of the window, w, z ∈ l2(ZV ) are the output and input signals respectively.

This representation is computationally feasible because all of its data elements

can be represented through computational data structures, and can be loaded in a

memory system. The continuous representation can not be represented using dis-

crete structures given its infinite nature. In the next subsection, the data structures

related to the MIMO ALS channel problem will be treated.

6.6.2 Kuck’s Diagrams Representation

The general formulation of a parallel structure about MIMO ALS channel esti-

mation can be described using Kuck’s diagrams. David Kuck presented an abstract

manner to represent parallel computational structures. This methodology of repre-

sentation is nearly related with the Parallel Random Machine Model (PRAM) used

to describe an abstract parallel machine. a parallel random-access machine (PRAM)

is a shared-memory abstract machine. As its name indicates, the PRAM was in-

tended as the parallel-computing analogy to the random-access machine (RAM).

Like Random Access Machine (RAM) models, that are used by sequential-algorithm

designers to model algorithmic performance, the PRAM is used by parallel-algorithm

designers to model parallel algorithmic performance (such as time complexity, where

the number of processors is a parameter). PRAM used the concept of shared mem-

ory to avoid the communication problem in Message Pass Interface (MPI) models.

The complexity is expressed as a function of the dimension of input set N and the

number of processors Ncpus.
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The Kuck’s approach creates a hierarchical structure to represent in parallel

manner the execution of an algorithm. This hierarchical structure reflects the con-

nection between the computing units and shared memory stages. Each level is tagged

with a specific label, like “1.5”. This representation approach is sufficiently abstract

to allow implementations in a wide spectrum of modern architectures. This fact is

very appreciated in a changing world of computational devices. The Figure 6–17

illustrates the Kuck’s Diagram Representation of the parallel MIMO ALS estima-

tion problem. In this figure the level 0 presents independent memory units, M0, and

uniprocessors P0, which contain registers and caches for fast access to frequently

used data. At level .5 these units are interconnected with a network N.5, generally

a bus, mesh, hypercube, shuffle, or other mechanism of data interchange. This net-

work provides communication between the processors, but doesn’t provide shared

memory addressing capabilities. So, a protocol of Message Pass is necessary. The

first level of shared-address memory space is SM1. The communication between the

processors in level 0 and SM1 is managed by SMN1. There exists a great differ-

ence between direct access to memory via SMN1 and indirect access to memory via

N.5. The difference is appreciated in a poor performance produced by the indirect

access to memory. Now, we can apply recursive principle to generate new levels.

This recursive approach is employed in the parallel MIMO ALS estimation problem

as is described in the Figure 6–17, where each internal diagram represents a SISO

problem instance and the whole diagram represents a MIMO problem instance.
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Figure 6–17: Kuck’s Diagram to Parallel MIMO ALS Estimation Problem.

6.6.3 Data Structures

In the previous subsection the discrete formulation of the MIMO ALS channel

problem was presented, under this assumption, the input data z(t) can be repre-

sented using a complex bi-dimensional matrix Z of size V× S. For this purpose we

will create a distributed array Z using pMatlab code showed in Table 6–16, where S

is the number of transmit transducers and M is the window’s length of each discrete
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input signal zs[v] ∈ l2(ZV ). The initialization process can be completed doing di-

rect assignment of each input signal zs[v] on its corresponding column on Z matrix.

The Figure 6–18 shows the distribution of input signals zv[d] inside input matrix Z.

We can apply the scattering data operation over the matrix Z; ie, to distribute its

columns among available processors. Partial computations will be carried in each

processor and finally the gathering process will allow to get an unified solution. This

process will be performed in each receiver for calculating the corresponding wr(t)

output signal.

Table 6–16: Script to Create a 2-D Mapping for Distributing the Matrix Z.

Line Instructions

1 mapZ = map([[Ncpus 1],{},[0:Ncpus-1]])

2 % mapping design → CV×P (S)

3 Z = zeros(M,S,mapZ);

4 % Z : CV×P (S)
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Figure 6–18: MIMO ALS Input Matrix Z (Size V × S) Containing each Input Signal

zs[v]

Another very important structures in this problem are α, ξ, and f matrices.

These parameters must be represented using 3-dimensional matrices because their

data values depend of the number of transmitter transducers S, the number of re-

ceiver transducers R, and the number of delay D or the number of Doppler L.

Under this perspective, we need to declare three 3-dimensional distributed matrices

Attenuation, Delay, and Doppler. Analyzing the Equation 6.50, we can decouple

the former three matrices; ie, we can scatter the data among Ncpus available pro-

cessors sending a complete copy of the Z matrix to each processor. In this scenario

each output signal wr[v] will be a function of the MIMO ALS Z matrix and the cor-

respondent data segment to the output r. The Equation 6.51 shows the functional
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relation between wr, Z, and Attenuation.loc,Delay.loc,Doppler.loc

wr = T {Z,Attenuation.locr, Delay.locr, Doppler.locr}, (6.51)

where T is the transformation to map the input signal Z and parameters (α, ξ, ν)

to output signal w, and Atenuation.locr, Delay.locr and Doppler.locr are the local

parameter segments of α, ξ, and ν parameters for output r. The pMatlab code to

parameters data distribution is shown in Table 6–17, where P (R) refers to data par-

tition on the R dimension and R is the real numbers set. In this point is remarkable

that still parameter D can not be equal to parameter L the map formulation is the

same in both cases.

Table 6–17: Script to Create a 2-D Mapping for Distributing Channel Parameters.

Line Instructions

1 map3D = map([1 N 1],,[0:Ncpus-1]);

2 % mapping design → RD|L×P (R)×S

3 Attenuation = zeros(D,R,S,map3D);

4 % Attenuation : RD×P (R)×S

5 Delay = zeros(D,R,S,map3D);

6 % Delay : RD×P (R)×S

7 Doppler = zeros(L,R,S,map3D);

8 % Doppler : RL×P (R)×S

The more important action in the previous pMatlab declaration is related to

data distribution. We are assuming the existence of N process units available

(processors) and we are distributing each of matrices Attenuation, Delay, and

Doppler among the Ncpus processors, ie., each matrix slide will be treated in its

correspondent processor ncpu. The mapping is defined in the first instruction, where

the [1 N 1] parameter indicates that the matrix will be distributed dividing the
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second dimension (R) including all elements of each slide (partial matrices of size

D × S or L × S). Mapping definition is the initial step for a parallel approach

pMatlab-based.

The next step is associated with data scattering. Each process must receive

a copy of the data segment to be processed locally. Using the ’local’ instruction

each process can obtain its data segment. The syntax is presented in Table 6–18,

where the segment of dmat correspondent to the processor ncpu was copied to the

variable local. Therefore, it can be treated as a regular variable (non-distributed).

The Figure 6–19 shows the data partition applying the map map3D on the 3D

attenuation matrix. At this point the data scattering has been completed. It is

possible to obtain local indexes for the local data segment using the get local ind

command. Now we are ready for processing the input signal zr[v] in the local

processor ncpu.

Table 6–18: Initialization of Local Variables.

Line Syntax

1 attenuation loc = local(Attenuation);

2 % Attenuation.loc← local(Attenuation)

3 delay loc = local(Delay);

4 % Delay.loc← local(Delay)

5 doppler loc = local(Doppler);

6 % Doppler.loc← local(Doppler)
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Figure 6–19: Data partition on 3D Attenuation Matrix

6.7 Testbeds

Modeling underwater acoustic media for signal analysis is a very complex pro-

cess. For this reason, experimental platforms in the form of testbeds are developed

to assist in difficult tasks, such as proof of concept demonstrations, theory testing,

principle validation, new concept generation, and computational tool enhancement.

We were able to establish an experimental platform as a computational testbed to

test our formulated subsystems conforming our proposed CSP modeling framework.

The experimental platform consisted of two 48GB workstations interconnected via

a network switch and dedicated gigabit Ethernet links.
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Figure 6–24 depicts the experimental platform configured to platform testbed

analysis of MIMO ALS channel subsystems using multidimensional, multicompo-

nent polynomial phase signals, as well as the use of pseudo-random Gaussian noise

(PRGN) waveforms, as sounding signals to estimate the delay-Doppler spread func-

tion U(ξ, ν).

The experimental platform was also configured to conduct testbed analysis for

the ISS operator sub-systems. Figure 6–25 depicts a computer-based ISS testbed

used for multi-target search, detection, estimation, and tracking operations. Figures

6–20 and 6–21 show 3D and 2D representation, respectively, of the response of an ISS

subsystem when a search pulse, with length 16,536 complex samples, is transmitted

and the scattered echo signal is received. Figure 6–22 and Figure 6–23 represent the

same process when the transmitted signal is substituted for a linear chirp signal.

Ambiguity Function of Six Square Pulses. Ambiguity Surface size: 16,536x16,536 samples.

Figure 6–20: Ambiguity Function Surface Az ∈ l2(Z216) in a 3D Representation. Six

Square Pulses.
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Ambiguity Function of Six Square Pulses. Ambiguity Surface: 16,536x16,536 Samples

Figure 6–21: Ambiguity Function Surface Az ∈ l2(Z216) in a 2D Representation. Six

Square Pulses.

Ambiguity Function of Six Chirp Pulses. Ambiguity Surface size: 16,536x16,536 samples.

Figure 6–22: Ambiguity Function Surface Az ∈ l2(Z216). Chirp Pulse.
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Ambiguity Function of Six Chirp Pulses. Ambiguity Surface size: 16,536x16,536 Samples

Figure 6–23: Ambiguity Function Surface Az ∈ l2(Z216 ) in a 2D Representation. Chirp

Pulse.
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7. Ethical Considerations

7.1 Introduction

This chapter deals with the ethical considerations that every doctoral student

must address during his/her doctoral work and after completion of such work, when

he/she begins his/her professional research work as part of society. Ethics defines

the set of rules and moral principles that govern a person’s behavior in society and

determines the moral correctness of a specified conduct. We will address in our

work these ethical considerations as well as ramifications involving environmental

and legal issues. We will also address other potential considerations that may affect

the ethical conduct of our work.

7.2 Sea and Ecosystems

From early ages the study of the sea and its ecosystems has been a topic that

has inspired to the human beings, both from a scientific as well as poetic dimension.

The vastness of the oceans has boosted the development of myths and legends that

have slowly been unveiled with the passage of time and the advancement of the

science. The knowledge of the sea has changed the way of thinking in our modern

world, however, the man in an effort to explore more of the sea has encountered

some problems. Perhaps the main problem was how to make a complete study

of the sea without disturb the underwater ecosystems. Many animals and plants

are severely affected with experiments conducted in certain marine ecosystems. A

typical example was the nuclear tests conducted by France at Mururoa Atoll. From

the experience gained in the conquest of the natural world in the mainland, the

man acknowledged that him must be careful in trying to conquer the marine world.

We must remember that two thirds of the planet is covered with water. Under this

perspective we want to contextualize the development of our thesis work.

144
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Lake Maracaibo is the biggest lake in South-America. In the periphery of it

many industries and factories have been installed during the last 80 years. All

residuals of industrial processes are thought to the lake. This situation has produce

an elevated level of pollution in it. The oil exploration has required to use many

time-frequency techniques for characterizing the subsoil under lake. These tests have

affected the livings in the lake. I hope to make a small contribution to avoid this

problem. The science and the ecology must work together.
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Figure 7–1: Underwater Ecosystem Impacted by ALS Channels Research

7.3 Environment Issues

Many research is performing in the area of environmental impact of the acoustic

signals in different groups of marine communities, like whales and dolphins [50][51][52].

Our work deals with the transmission and reception of acoustical information.

This mode of transmission affects all living organisms since it deals with the transfer

of energy through longitudinal waves pressure waves. Since bio-acoustics is the
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study of sound produced by or affecting living organisms, in particular, sounds

pertaining to communications, it is of paramount importance to study how any

proposed acoustical communication technique may affect the living. Figure 7–1

illustrates the risk associated with acoustic pollution in underwater ecosystems. It

can be induced by communication equipment used in underwater communication.

Environmental ethics is the part of environmental philosophy which consid-

ers extending the traditional boundaries of ethics from solely including humans to

including the non-human world. This research work involves ethical issues to be ad-

dressed when the ecosystem is when the ecosystem is significantly affected by the use

of acoustic signals that disrupt the lifestyle of living organisms within the habitat.

Some disciplines related with this perspective are environmental law, environmental

sociology, ecotheology, ecological economics, ecology and environmental geography.

In 2003, an ecologist team called Greenpeace began a campaign to address low-

frequency active sonar’s effect on marine life. For a number of years, Greenpeace

had raised concerns that various types of active sonar were increasing noise lev-

els in the world’s oceans to the point that caused physical damage to marine life

(www.greenpeacefoundation.org). Before Greenpeace’s announcement, the United

States military began use of low-frequency, long range active sonar in a special

program to acoustically light oceans for advance warning of submarine and ship ac-

tivity by other countries. In 2003 Greenpeace made a new suggestion, recommending

acoustic daylight imaging as a more environmentally friendly type of sonar.

Michael Jasny establishes the problem in the following terms: Undersea noise

pollution is like the death of a thousand cuts [53]. Many whales and other aquatic

species depend on sound as they hunt for food, detect predators, find mates, and

maintain their awareness in the darkness of the sea. The use of the acoustic signals,

that cause noise in the natural communication processes, can produce chaos in

underwater communities, like dolphins or whales. On land environments animals
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alike know to move away from a loud or traumatic sound; the further we get, the

more the sound dissipates. In underwater environments is so different. Sonar and

ship noise can send a pulse wave of noise for great distances. It is difficult to

pinpoint the origin or source of a particular sound and even harder to avoid it.

Whales, dolphins and other marine mammals that have been caught in the wake

of sonar have been disoriented during hours. These observations were done by the

Oceanic Preservation Society in its official website www.opsociety.org.

7.4 Legal Issues

Legal issue become very relevant when dealing with research involving human

subjects. Even though our proposed research does not involve human beings as

participants in any systematic experimentation, we are very much aware of the

cautionary actions and steps that must be taken in order to respect and preserve

the dignity, bodily integrity, autonomy, and privacy of humans.

7.5 Other Considerations

The development of modern societies depend to a large extent upon the contri-

bution of technology, such as the development and use of monitoring and commu-

nication systems. These processes are, in general, associated with the production

of waves, some of which are unavoidable hazardous. Such radiation requires careful

management to ensure adequate protection of living and the environment. We will

be very observant during our proposed research work of any other considerations

which may surface and may have a potential ethical or legal impact.



8. Conclusions and Future Works

8.1 Conclusions

This thesis presented a Computational Signal Processing modeling framework,

named ALSISS, for the analysis of underwater acoustic signals associated with op-

erations pertaining to the search, detection, estimation, and tracking of underwa-

ter moving objects. The thesis concentrated on the use of concepts, tools, meth-

ods, and rules from the field of Information-Based Complexity to formulate error-

approximation algorithms, under a general framework, in order to address underwa-

ter acoustics signals analysis problems that could be solved approximately. Time-

frequency calculus was utilized as the main computational signal processing tool to

treat signal analysis problems under the formulated ALSISS framework. Concrete al-

gorithm implementation results were realized using convex optimization techniques.

New variants of multidimensional matching pursuit algorithms for time-variant dou-

ble dispersive acoustic channel characterization were formulated under the language

of Kronecker Products Algebra and implemented using the pMatlab parallel pro-

gramming environment. An improved performance of 4-times was obtained with

respect to existing algorithms. Some original contributions are presented in the list

bellow:

i Extension Spaces Formulation of J. F. Traub IBC Framework

ii Parallel Variant of Matching Pursuit Algorithms

iii Parallel Kronecker Representation of the Ambiguity Function

iv Integration of ALS and ISS Systems using Operators Theory

v Unified Representation of Delay-Doppler Spread Function

vi New Scattering Function Estimation Techniques

vii Application of Error Approximation Algorithms to Channel Estimation Problems

viii Development of a New Computational Framework

148
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Most of presented graphs and tables are original and have been created for this

thesis work. Some graphs and tables have been reproduced from other works. These

reproduced graphs and tables were used to describe previous works.

8.2 Future Works

As future works we present the following considerations:

i Attempt to fully integrate main concepts tools, methods, and rules of Information-

Based Complexity (IBC) into the time-frequency calculus.

ii Extend the techniques of Tensor Signal Analysis and Kronecker Products Algebra

to better exploit the inherent parallel computational structure of Multiple-Input

Multiple-Output (MIMO) matching pursuit algorithms.

iii Seek a more systematic and automated integration environment between the ALS-

ISS modeling framework and the associated testbeds described in the thesis.

iv Extend the work on Computable Analysis in order to better characterize real-

number models of computation suitable for time-frequency calculus.

v Extend the mathematical analysis of waveform design techniques by using Weyl-

Heisenberg group theory.

vi Improve on channel estimation techniques for double dispersive channels by using

advanced time-frequency calculus.

vii Extend the ALS-ISS system integration framework by incorporating non-additive

measures.

viii Improve on optimal error algorithm analysis by using Traub’s adversary principle.
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[51] Servidio A. Mart́ın, V. and S. Garćıa. Mass strangdings of beaked whales in the

canarian islands. Proceedings of the Workshop on Active Sonar and Cetaceans

(European Cetacean Society), 2(4):33 – 36, 2004.

[52] Barlow J. Pitman-R. Balance L. Klinger-T. Taylor, B. A call for research to

assess risk of acoustic impact on beaked whale populations. IWC Scientific

Commitee (SC/56/E36), 3(2), 2004.

[53] Michael Jasny. The rising toll of sonar, shipping and industrial ocean noise on

marine life. Natural Resources Defense Council, 1(1):1 – 84, 2005.


	Abstract English
	Abstract Spanish
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	1 Introduction
	1.1 Justification & Problem Formulation
	1.2 Problem Space
	1.2.1 Continuous Ambiguity Functions and the General Class of Cohen Distributions
	1.2.2 Discrete Ambiguity Functions (DAF) and Discrete Cohen Distributions (DCD)
	1.2.3 Relating DAF and DCD Operations

	1.3 Proposed Solutions
	1.4 Thesis Organization

	2 Elementary Concepts and Ideas
	2.1 Introduction
	2.2 Kronecker Products
	2.2.1 Kronecker Products and Parallel Formulations
	2.2.2 Kronecker Products and Vector Formulations

	2.3 Modeling and Simulation
	2.4 The Stochastic Processes
	2.5 Random Fields

	3 Background and Related Works
	3.1 Literature Review
	3.1.1 Introduction
	3.1.2 Characterization of Randomly Time-Variant Linear Channels
	3.1.3 Information-Based Complexity
	3.1.4 Improved RIP Analysis of Orthogonal Matching Pursuit


	4 IBC & CSP Theoretical Frameworks
	4.1 Introduction
	4.2 Foundations of Computing
	4.2.1 System or Machine Abstraction
	4.2.2 Complexity Classes
	4.2.3 Finite-State Automaton
	4.2.4 Formal Definition of a Turing Machine

	4.3 Classical Complexity Measures
	4.4 Information-Based Complexity (IBC) Definition
	4.5 Assumptions of IBC
	4.6 Application Fields for IBC
	4.7 Works on IBC Field
	4.8 Computational Signal Processing Framework
	4.9 Convex Optimization
	4.9.1 General Optimization Problem
	4.9.2 Particular Optimization Problems
	4.9.3 Linear Programming Problem
	4.9.4 Convex Optimization Problem
	4.9.5 Least-Square Problem
	4.9.6 Approximation Algorithms


	5 Acoustic Linear Stochastic Systems
	5.1 Introduction
	5.2 Linear Systems
	5.3 Stochastic Systems
	5.4 Time-Variant Systems
	5.5 Study of Communication Systems
	5.6 Estimation Using a Parallel Approach
	5.6.1 The Channel as an Operator
	5.6.2 Characterization Function for an ALS channel
	5.6.3 Coherence Time TC and Coherence Bandwidth BC in the Channel Modeling

	5.7 Implementation Results

	6 MIMO Channel Parameter Estimation Algorithms Implementation
	6.1 Introduction
	6.2 Channel Configurations
	6.2.1 SISO Case
	6.2.2 MISO Case
	6.2.3 SIMO Case
	6.2.4 MIMO Case

	6.3 Delay-Doppler Estimation Approaches
	6.3.1 Delay-Doppler SISO Approach
	6.3.2 Estimating a Delay-Doppler SISO ALS Channel
	6.3.3 Delay-Doppler SISO Estimation Strategy using Matching Pursuit Algorithms
	6.3.4 Matching Pursuit Complexity
	6.3.5 Delay-Doppler SISO Channel Estimation Results
	6.3.6 Delay-Doppler MIMO Approach
	6.3.7 Estimating a Delay-Doppler MIMO ALS channel
	6.3.8 Delay-Doppler MIMO Estimation Strategy
	6.3.9 Delay-Doppler MIMO Channel Estimation Results

	6.4 Parallel Modeling Tools
	6.4.1 pMatlab

	6.5 MIMO Channel Estimation Parallel Approach
	6.6 MIMO ALS Parallel Approach
	6.6.1 Computational Formulation
	6.6.2 Kuck's Diagrams Representation
	6.6.3 Data Structures

	6.7 Testbeds

	7 Ethical Considerations
	7.1 Introduction
	7.2 Sea and Ecosystems
	7.3 Environment Issues
	7.4 Legal Issues
	7.5 Other Considerations

	8 Conclusions and Future Works
	8.1 Conclusions
	8.2 Future Works


